
Platform Security Controller – Caliptra RDC Analysis

Reset Domain Crossing - Basics – 1

1 Reset Domain Crossing - Basics
When a design is clocked by a single clock but have multiple asynchronous resets, there is a possibility of having
reset domain crossing paths which can cause Metastability due to the assertion of asynchronous resets. This is an
issue because static timing analysis does not check Reset->Q paths on assertion of reset.

When RESET1 is asserted and RESET2 is in de-asserted state, the right flop can go to metastable state thereby
corrupting the downstream logic.

Platform Security Controller – Caliptra RDC Analysis

Reset Domain Crossing - Basics – 2

•

•

There are couple of ways in which RDC paths can be fixed.

Data path Synchronization - Adding synchronizer in data path

Synchronized Enable Synchronization Scheme - Block the ingress data path of destination flop during the
source flop reset assertion window.

Platform Security Controller – Caliptra RDC Analysis

Reset Domain Crossing - Basics – 3

•

qualifier = RST_EN

Clock-Gating Cell Synchronization Scheme - Gate the clock of the destination flop when source reset is
asserted

Platform Security Controller – Caliptra RDC Analysis

Reset Domain Crossing - Basics – 4

Platform Security Controller – Caliptra RDC Analysis

Reset Definitions – 5

2 Reset Definitions

Reset Name Reset Type Reset Polarity Definition Point Reset Generated by

CPTRA_PWRGD Async Active Low cptra_pwrgood Primary Input

CPTRA_RST Async Active Low cptra_rst_b Primary Input

CPTRA_UC_RST Async Active Low caliptra_top.soc_ifc_top1.
i_soc_ifc_boot_fsm.cptra
_uc_rst_b

Generated by Boot FSM

CPTRA_NON_CO
RE_RST

Async Active Low caliptra_top.soc_ifc_top1.
i_soc_ifc_boot_fsm.cptra
_noncore_rst_b

Generated by Boot FSM

RISCV_VEER_COR
E_RST

Async Active Low caliptra_top.rvtop.veer.co
re_rst_l

AND of
BOOT_FSM_CPTRA_UC_
RST and
RISCV_VEER_DBG_CORE
_RST

Functionally same as
CPTRA_UC_RST

RISCV_VEER_DBG
_DM_RST

Async Active Low caliptra_top.rvtop.veer.d
bg.dbg_dm_rst_l

AND of CPTRA_PWRGD
and a bit controlled from
JTAG TAP

Functionally same as
CPTRA_PWRGD

CPTRA_JTAG_RST Async Active Low jtag_trst_n Primary Input

The reset definitions can be visually represented as shown in the diagram below.

Platform Security Controller – Caliptra RDC Analysis

Reset Definitions – 6

Platform Security Controller – Caliptra RDC Analysis

RDC false paths – 7

3 RDC false paths
This section needs to be reviewed by Caliptra designers.

Also assuming that the resets controlled from JTAG TAP will not be asserted during functional state.

The below table shows the false paths between various reset groups

from_reset to_reset Comment

CPTRA_PWRGD all other groups CPTRA_PWRGD is the deepest reset domain, so all RDC paths from
CPTRA_PWRGD can be set as false paths

CPTRA_RST CPTRA_UC_RST Boot FSM is reset by CPTRA_RST

CPTRA_RST CPTRA_NON_COR
E_RST

Boot FSM is reset by CPTRA_RST

CPTRA_NON_COR
E_RST

CPTRA_RST CPTRA_NON_CORE_RST can be asserted only be asserting
CPTRA_RST

CPTRA_NON_COR
E_RST

CPTRA_UC_RST CPTRA_NON_CORE_RST can be asserted only be asserting
CPTRA_RST

Asserting CPTRA_RST means CPTRA_UC_RST will be asserted

The reset dependencies can be visually represented as explained in Section 5.

Platform Security Controller – Caliptra RDC Analysis

RDC Crossings Reported – 8

4 RDC Crossings Reported

Sl No from_reset to_reset Violation Count

1 CPTRA_UC_RST CPTRA_NON_CORE_RST 3704

2 CPTRA_UC_RST CPTRA_PWRGD 2348

4 CPTRA_UC_RST CPTRA_RST 373

5 CPTRA_RST CPTRA_PWRGD 673

6 CPTRA_NON_CORE_RST CPTRA_PWRGD 1899

Platform Security Controller – Caliptra RDC Analysis

RDC Analysis – 9

•
•

5 RDC Analysis

5.1 Reset Sequencing Scenarios
The reset defined in Section 1 has the following sequencing phases which are applicable for different reset
scenarios - cold boot, cold reset, warm reset and firmware reset. For simplification of our RDC analysis, we are
assuming that the following debug registers which are driven from JTAG will not be toggled during functional flow.

caliptra_top.rvtop.veer.dbg.dmcontrol_reg[1] = 0
caliptra_top.rvtop.veer.dbg.dmcontrol_reg[0] = 0

In addition to the above, we have set caliptra_top.scan_mode = 0 for our analysis.

There is an issue in design related to the above JTAG registers. Please see Section 3 and review.

The reset sequencing looks like below.

Reset Sequencing

{signal: [
 {name: "Phase", wave: "x.3.........4..........5..........6.........",
data: ["COLD BOOT", "COLD RESET", "WARM RESET", "FIRMWARE RESET"] },
 {},
 {name: 'clk', wave:
'p...'},
 {name: 'CPTRA_PWRGD', wave:
'x.0...1......0...1..........................'},
 {name: 'CPTRA_RST', wave:
'x.0.....1....0.....1....0...1...............'},
 {name: 'CPTRA_NON_CORE_RST', wave:
'x.0.....1....0.....1....0.....1.............'},
 {name: 'CPTRA_UC_RST', wave: 'x.0.....1....0.....1....0.....1....0...1....'}
],

}

Platform Security Controller – Caliptra RDC Analysis

RDC Analysis – 10

1.

2.

5.2 Reset Ordering
The table below defines the order in which reset can get asserted. A ">>" in a cell at row X and column Y indicates
that if the reset in row X is asserted, the reset is row Y will also get asserted. For rest of the cells (in which symbol
">>" is not there) the above assumption doesn't hold good and hence the paths between those resets are potential
RDC violations. The black cells can be ignored as they are between same resets.

CPTRA_PWRGOOD CPTRA_RST CPTRA_NON_CORE_
RST

CPTRA_UC_RST

CPTRA_PWRGOOD >> >> >>

CPTRA_RST >> >>

CPTRA_NON_CORE_
RST

>> >>

CPTRA_UC_RST

There are mainly two groups of reset crossings as identified in the design

During WARM_RESET scenario, when CPTRA_RST is asserted, we will have crossings from flops on
CPTRA_RST, CPTRA_NON_CORE_RST and CPTRA_UC_RST to flops on CPTRA_PWRGOOD
During FIRMWARE_RESET scenario, when CPTRA_UC_RST is asserted, we will have crossings from flops on
CPTRA_UC_RST to flops on CPTRA_PWRGOOD, CPTRA_RST and CPTRA_NON_CORE_RST

In order to fix these issues, we can try to gate the clock of the metastable flop when the reset of the source
flop is getting asserted.

5.3 RDC crossing examples
Below table captures some examples of RDC crossings which are being reported in the current design.

Sl No Source
Reset

Destination
Reset

Source Flop Destination Flop Schemati
c

1 CPTRA_UC_
RST

CPTRA_PWRG
OOD

caliptra_top.rvtop.veer.d
bg.dbg_state_reg.genblo
ck.dffs.dout[3:0]

caliptra_top.rvtop.veer.G
en_AXI_To_AHB.sb_axi4_
to_ahb.buf_writeff.genbl
ock.dffs.genblock.dffs.do
ut[0]

Platform Security Controller – Caliptra RDC Analysis

RDC Analysis – 11

1.
a.

b.
2.

3.

Sl No Source
Reset

Destination
Reset

Source Flop Destination Flop Schemati
c

2 CPTRA_UC_
RST

CPTRA_PWRG
OOD

caliptra_top.rvtop.veer.G
en_AXI_To_AHB.lsu_axi4
_to_ahb.buf_alignedff.ge
nblock.dffs.genblock.dffs
.dout[0]

caliptra_top.soc_ifc_top1
.i_soc_ifc_reg.field_stora
ge.CPTRA_HW_ERROR_F
ATAL.error_code.value[0]

3 CPTRA_UC_
RST

CPTRA_RST caliptra_top.rvtop.veer.G
en_AXI_To_AHB.lsu_axi4
_to_ahb.buf_alignedff.ge
nblock.dffs.genblock.dffs
.dout[0]

caliptra_top.soc_ifc_top1
.i_soc_ifc_reg.field_stora
ge.intr_block_rf.error_int
r_en_r.error_bad_fuse_e
n.value

4 CPTRA_UC_
RST

NON_CORE_R
ST

caliptra_top.rvtop.veer.G
en_AXI_To_AHB.lsu_axi4
_to_ahb.buf_alignedff.ge
nblock.dffs.genblock.dffs
.dout[0]

caliptra_top.soc_ifc_top1
.i_sha512_acc_top.i_sha
512_acc_csr.field_storag
e.LOCK.LOCK.value

5 NON_CORE_
RST

CPTRA_PWRG
OOD

caliptra_top.soc_ifc_top1
.i_ahb_slv_sif_soc_ifc.ad
dr[0]

caliptra_top.soc_ifc_top1
.i_soc_ifc_reg.field_stora
ge.CPTRA_FW_EXTENDE
D_ERROR_INFO[2].error_
info.value[31:0]

6 NON_CORE_
RST

CPTRA_PWRG
OOD

caliptra_top.data_vault1.
dv_ahb_slv1.addr[1:0]

caliptra_top.data_vault1.
dv_reg1.field_storage.STI
CKY_DATA_VAULT_ENTR
Y[0][8].data.value[31:0]

5.4 Solution Space
There are two ways to resolve RDC crossings

Manually verify that all potential crossings that are reported by the tool are ok to waive because either
The crossing is gated by an enable signal which gets functionally activated at the time of source reset
assertion, OR
The destination flop going to metastable state will not cause a functional issue

Add synchronization in the failing paths so that the destination flops don't go into metastable state. This can
be hard as there are a huge number of crossings in the design.
Ensure that the clock of the destination flops are gated during the source flop reset assertion window. This
will ensure that when source reset is asserted, the destination flop doesn't have any clock edges active
around this time thereby eliminating the chance of going to metastable state.

I will explore the solution space mentioned in point 3 above.

Platform Security Controller – Caliptra RDC Analysis

RDC Analysis – 12

Both CPTRA_UC_RST and CPTRA_RST can get asserted while other resets will be in their de-asserted state as
mentioned in the sequence in Section 7.1.

Upon analyzing the RDC violations reports, we found that the following modules/instances receive
CPTRA_PWRGOOD, CPTRA_RST and NON_CORE_RST and the flops on these resets inside these blocks are
destination flops in RDC crossings.

Module CPTRA_PWRGOOD CPTRA_RST CPTRA_NON_CO
RE_RST

ahb_lite_bus_i x

data_vault1 x x

doe x x

ecc_top1 x x

hmac x x

key_vault1 x x

pcr_vault1 x x

sha256 x x

sha512 x x

soc_ifc_top1.i_ahb_slv_sif_soc_ifc x

soc_ifc_top1.i_mbox x

soc_ifc_top1.i_sha512_acc_top x x

soc_ifc_top1.i_soc_ifc_reg x x

u_ahb_lite_2to1_mux x

imem x

rvtop x

Platform Security Controller – Caliptra RDC Analysis

RDC Analysis – 13

•

Two new signals are added in the design to gate the clocks of the destination modules:-

uc_rst_assert_window - This signal is driven by Boot FSM just around the firmware reset assertion window
as shown below

Boot FSM

{signal: [
 {name: 'clk', wave: 'p...................................'}
,
 {name: 'cptra_rst_b', wave: 'x.0.....1...........................'}
,
 {name: "BOOT FSM State", wave: "x.3......4....7.....86.......7......",
data: ["BOOT_IDLE", "BOOT_FUSE", "BOOT_DONE", "BOOT_FW_RST", "BOOT_WAIT", "BOOT_DONE"]
 },
 {name: 'fw_update_rst', wave: 'x.0................1................',
node: '...................a', },
 ['',

Platform Security Controller – Caliptra RDC Analysis

RDC Analysis – 14

•
•

 {name: 'propagate_reset_en', wave: 'x.0...........1.....0........1......'}
,
 {name: 'propagate_uc_reset_en', wave: 'x.0...........1.....0........1......'}
,
 {name: 'fsm_synch_uc_rst_b', wave: 'x.0...........1.....0........1......'}
,
 {name: 'fsm_uc_rst_assert_window', wave: 'x.0................1.0..............',
node: '...................b',},
],
 ['',
 {name: 'fsm_synch_noncore_rst_b', wave: 'x.0............1....................'}
,
 {name: 'synch_uc_rst_b', wave: 'x.0............1.....0........1.....'}
,
 {name: 'uc_rst_assert_window', wave: 'x.0.................1.0.............',
node: '....................c',},
],
 ['',
 {name: 'cptra_noncore_rst_b', wave: 'x.0.............1...................'}
,
 {name: 'cptra_uc_rst_b', wave: 'x.0.............1....0........1....'},
],

 {name: 'clk_cg', wave: 'p....................l.p............',
node: '.....................d',},
],

edge: [
 'a~>b', 'b~>c', 'c~>d',
]

}

To achieve the above timing, the following changes are done to BOOT FSM (This needs to be reviewed by
Caliptra designers)

uc_rst_assert_window is set to 1 in BOOT_DONE state if arc_BOOT_DONE_BOOT_FWRST is set
uc_rst_assert_window is set to 1 in BOOT_FW_RST state

Platform Security Controller – Caliptra RDC Analysis

RDC Analysis – 15

•

•

•

•

•

In addition to above, a new state is required to be introduced after BOOT_FW_RST so that uc_rst_assert_window
is kept at 1 for at-least two cycles after UC reset is asserted. This is not true as of today and need FSM update.

warm_rst_assert_window - During warm reset assertion, Caliptra IP has no control on its assertion timing
since this is externally driven. In order to prevent the RDC crossings during warm reset assertion, we have
added a new top level port called warm_rst_assert_window and needs to be driven from SOC. This signal
needs to be asserted (set to 1) at-least 1 cycle before warm reset (cptra_rst_b) is asserted and needs to held
low (at 0) for at-least 2 cycles after the warm reset assertion edge.

Using the above two signals, we have modified the clock gating structure as shown below. Specifically the changes
are as follows:-

[Highlighted in pink] The clock enable logic at caliptra_top.cg.caliptra_icg has been modified to take into
account the above two signals. When any of the assert_window signals are 1, the clock is gated.
[Highlighted in blue] The clock feeding to rv_top is gated when either of the assert_window signals is high

Whether the temporary gating of destination clocks is functionally ok needs to be confirmed by Caliptra IP team.
More specifically, we have the below assumption baked in while

During firmware reset, SW has to ensure that there no pending transactions from RISCV side so that clock
gating gated for couple of cycles should not cause in-flight transactions to get missed.
SOC has to drive warm_rst_assert_window before warm reset is asserted. Whether every SOC can do this is
another question to be looked after. For SW initiated SOC warm reset, this might be possible but for
hardware event generated warm resets, the HW logic driving them should be able to generate the same. I am
not sure whether every SOC design will be able to accommodate this.

RDC violations full log - /home/scratch.amullick_mobile/psc/caliptra_ss_tree/tot_may10/hw/nvip/outdir/ip/
caliptra/1.0/syn/caliptra_top/t264/rdc_run1/fv/rtl_rdc/NV_caliptra_top.rdc_struct_filt.report

Platform Security Controller – Caliptra RDC Analysis

RDC Analysis – 16

Platform Security Controller – Caliptra RDC Analysis

Issues Seen in Design – 17

1.

2.
3.
4.

6 Issues Seen in Design
Even though CPTRA_PWRGD is defined to be the deepest reset in the design, the Boot FSM is NOT consuming
CPTRA_PWRGD to reset the entire design. In current implementation, asserting CPTRA_PWRGD (setting it to
0) will not assert BOOT_FSM_CPTRA_UC_RST and BOOT_FSM_NON_CORE_RST which doesn't seem to be
correct.
Primary input reset pin cptra_pwrgood needs to be synchronized with clk before using in the design
Primary input reset pin cptra_rst_b needs to be synchronized with clk before using in the design
Primary input reset pin jtag_trst_n needs to be synchronized with jtag_tck before using in the design

Sl no Issue

1 In caliptra_top.rvtop.veer.dbg module, we have the below assign statement

assign dbg_dm_rst_l = dbg_rst_l & (dmcontrol_reg[0] | scan_mode);

The reset value of dmcontrol_reg[0] is 0 and hence the above line is blocking the
propagation of dbg_rst_l to dbg_dm_rst_l causing ASYNC flops to never get its
reset.

	Reset Domain Crossing - Basics
	Reset Definitions
	RDC false paths
	RDC Crossings Reported
	RDC Analysis
	Reset Sequencing Scenarios
	Reset Ordering
	RDC crossing examples
	Solution Space

	Issues Seen in Design

