iPOS @

NIl T E C HNOJSOFT
Programming

User Manual

© Technosoft 2019 P091.063.iPOS.STO.UM.0219

Table of contents

LI L (=3 o1 o o1 L= o 1 2
Read This First ... s e s s 1
About This ManUaL ... 11
Scope of This ManUAl ... e e e s e s s e e e e e e mm s 1
Notational ConVeNtioNS.........cooiiiiiiii s e e s s s e r e e nmanns 1
Related Documentation........ ..o s s s r s s e r e rnmanas 12
If you Need ASSIStaNCecciiiiiiiiiieeiirr s 12

1 Getting Started ... 13
1.1 Setting up the drive using EasySetup or EasyMotion Studio.........ccccccuuuiirirnnnneee. 13
1.1.1...... What are EasySetup and EasyMotion STUAIO?........c..eiiiiiiiiiiie e 13
11.2..... Installing EasySetup or EQsyMotion StUIO.........couiiuiiiiiiiiie e e e 13
113 ... Establishing serial communication with the drive ... 14
114... Choosing the drive, motor and feedback configurationccccoiiiiiiii e 14
11.5.... TaYigele[WeiTaTe [l aaTe] (o] e - L = R OO P T PPP PPN 15
1.16...... Commissioning the drive; configuring motor tuning and protectionscccocccviiiiie e, 15
11.7 ... Downloading setup data to drive/MOTOrii i e 17
1.1.8...... Saving Setup data iN @ filEeiiieee e e e eneeas 17
11.9... Creating a .sw file with the setup data...............ooiiiiiii e 17
1.1.10.....Checking and updating setup data via .sw files with a CANopen master...........c.cccccceerirerninenneeenns 18
1.1.11..... Testing and monitoring the drive DEhaViorcooiiiiiii e 18
1.1.12..... TECANOCAN EXIENSIONeiiiitiie ittt ettt e e et e e eab e e e s bt e e e aabe e e e snte e e s nnneeeeas 18

1.2 Changing the drive AXis ID (NOd€ ID)cccoiiiiiiiiiiiiiiiirrr 18
1.3 Setting the current limit ... —— 19
1.4 Setting the CAN baud rate ... 19
1.5 CANopen factor group Settingcccceeecceiiiiirireccsrr s e e e s emanas 20
1.6 Using the built-in Motion Controller and TML ... 20
16.1...... Technosoft Motion Language OVEIVIEWeieiiuireieiieeeiieieeeesiee e e eeeeeesseeeeeeanteeeesnneeeessnneeeeanseeeeenes 20

2 Layer Setting Services (LSS protocCol)........cccceemmmmmmmmmmmmmmmmmmmmmmmmmemmmmmnmmmsmmmmmssenn. 21
720 T © 1Y = VT 21
2.2 Configuration SErVICEeSs........cccciii s 22
221... SWItCh STate GIODAL. ... e e 22
222... SWItCh STate SEIECHIVE. ... et e et e s 22
223 ... (07T 1T [0 L3 N\ o T [N | USRS 22
224 ... Configure Bit TIMiNG Parameterso.coi ittt e e e e e e e e s e snnraeeaaaeeeaaas 23
225..... Activate Bit TIMING Parametersttt e e e e e e e e e neeeeee s 23
226..... Store Configuration ProtOCOIuuiiiiiiiiieit et e et e e e e e e e e e e e e s e s snnrbaeaeaeeeaas 24
227 Inquire [dentity VENAOT ID ...ttt e e e e ettt e e e e e et e e e e e e e e e nnneeeeeans 24
228...... Inquire Identity ProdUCE COTE........coiiiiiiiiie ettt e e e e e st e e e e e e st a e e e e e e e s sneneaneeens 24
229...... Inquire Identity ReVISION NUMDET ... 25
2.2.10.....Inquire Identity Serial NUMDETcoooiiiiiiii et 25
2.2.11..... Inquire 1dentity NOGE IDueiiiiiie et e e e e s e st e e e e e e s st aeeeeeaeessensneneeeens 25
2.2.12.....1dentify REMOE SIAVE ..ot e et e et 25
2.2.13.....1dentify non-configured REMOLE SIQVEccociiiiiiiiie e a e e ea s 26

3 CAN and the CANoOpen protoColccceeeciiiiimmiiirreeir s e e s e e e s e nmns s 27

© Technosoft 2019 2 iPOS CANopen Programming

B Tt T 0 - I 4 =Y L1 = 27

3.2 Accessing CANOPEN dEVICEScccvuuemrrriiiiiiiissenrr s sssn s annns 27
3.21...... (@] o] 1=z e o7 1) =T oY S 27
3.22... Object access using iNdeX and SUD-INAEXiiiiiiiiiiiiiee e 27
3.23...... Service Data ObJECES (SDO)ueiiiiiiiieiiiiee ettt e et e e et e e et e e e et e e e et e e e e anee e e e anneeeeateeeeeanteeeeeneeas 28
3.24 ... Process Data ODbJECES (PDO)cooiiiiiiiiieeeiiee ettt e et e e e s e e 28

3.3 Objects that define SDOs and PDOS........cccceeciiiiiiirirccecrr e s e 29
3.3.1...... Object 1200n: Server SDO Parameter ... et 29
3.32..... Object 1400n: Receive PDO1 Communication Parametersccoovieiiiiniiiniienieenc e 29
3.33...... Object 1401n: Receive PDO2 Communication parametersc.coooieeeiiiiieiiiiiie e 30
3.34..... Object 1402h: Receive PDO3 Communication parametersocuveieeiiiiineieniieseeeniec s 30
3.35...... Object 1403n: Receive PDO4 Communication parameterscccoovieeiiiiieeiiiiiee e 31
3.36...... Object 1600n: Receive PDO1 Mapping Parameters...........cocvveiiiiiiiiiiiieieieseeesic e 31
3.3.7 ... Object 1601n: Receive PDO2 Mapping Parameters...........oocviiiiiiiiiiiieeeiiieeeee et 32
3.38..... Object 1602n: Receive PDO3 Mapping Parameters...........oocuuiiiiiiiiiiiieeeiiiee et 33
3.39...... Object 1603n: Receive PDO4 Mapping Parameters...........cocviiiiiiiiiiiiiieieieseesic e 33
3.3.10.....Object 1800n: Transmit PDO1 Communication parameters...........ccccoovuiiiiiiieee i 34
3.3.11.....Object 1801n: Transmit PDO2 Communication parametersc.ceeiueeriiiiieeiiee e 34
3.3.12.....Object 1802n: Transmit PDO3 Communication parametersccccooviiiiiiieee i 35
3.3.13.....Object 1803n: Transmit PDO4 Communication parametersc.ceeiueeriieiieeiiie e 36
3.3.14.....Object 1A00n: Transmit PDO1 Mapping Parametersooueiiiiiiiiiiiiie et 37
3.3.15.....Object 1A01h: Transmit PDO2 Mapping Parametersc.cccoiuiiiiiiiieiniie et 37
3.3.16.....Object 1A02n: Transmit PDO3 Mapping Parameterscoouieiiiiiiiiiiiiiieee et 37
3.3.17.....Object 1A03h: Transmit PDO4 Mapping Parametersc.ccooiouiiriiiiieiniie e 38
3.3.18..... ODJECt 207Dh: DUMIMYtiiiiiieiiiieeiee sttt e et ettt e st e e seteeeabeesmteesaeeesseeesabeesmeeeanbeeanseesnbeesnneennnas 38

3.4 Dynamic mapping of the PDOS ... s s s e s s s e 39

3.5 RxPDOs mMapping €Xample........cceuceiiirmimimecmssssssserrerssmssssssssssrssssmmsssssssssssssssmssssssans 39

3.6 TxXPDOs Mapping €Xampleccceeciiiiiirrirecessrsssrrerssmsssss s s e s e rssmmsssssssssesssssmsssssssns 40

4 Network Managementc..oiiiiieiiiiieceic e e rs s s sma e e s e s e nmn s e r e n s e rennn 42

g T © Y= SO 42
41.1...... Network Management (NMT) State Machingcooiiiiiiiiiiiee e e 42
41.2...... DIEVICE CONTION ...ttt e ettt e ettt oo bt e e a et e e e bt e e sab bt e e e st et e e sane e e e anbeeeean 42

4.1.2.1 ENter Pre-OPEratiONaleeeeeee ettt ettt e e ettt a e e e e e et a e e e e e s sssaeees 43
4.1.2.2 RESEt COMMUNICALION...........oeeeeieie et ettt a e et e e e e nnnee s 43
4.1.2.3 RESEEINOUE ... 43
4.1.2.4 Start REMOTE INOUEc..oeeeeiie ettt ettt et e e nanee s 44
4.1.2.5 StOP REMOLE NOQE. ...ttt e e e et e e e e e ettt a e e e e e sttt a e e e e essssssseees 44
41.3...... D=3V (o7 g To] 1 (o] 4 1o T SRS PEPPTSPN 44
/3 R By B VoY [=e (U= o [0 To [o) (o oo) FU PR 44
4.1.3.2 HEAIMDEAL PIOOCOI...........coeiieeeee ettt ettt e e e e e e an 44
4.7.3.3 BOOL-UD PIOOCOI. ...ttt ettt e et e e et e e et e e nnnee s 44
4.1.3.4 Synchronization BEIWEEN UEVICESoueeiueiiiie ettt ee e eee s 44
414 =0 T=T o [T Ty Y g Lo T To= Vo [PP 45
4.1.4.1 Emergency MeSSAGE SIIUCKIUIESccuiiuee ettt e e ee et e e sanee s 45

4.2 Network management Objects...........ccccciiiiiiiniinn 46
421 ... Object 100Th: ErrOr REGISIENeiiiieie ettt e e e 46
422 ... Object 1003h: Pre-defined error field ... e 46
423...... Object 1005n: COB-ID 0f the SYNC MESSAQE.......cciiiuiiiiiieeeeeeiiiiieee e sttt e e e e e s e e e e e e s e asnrraereaeeeaas 47
424 ... Object 1006n: Communication CyCle PEriOdc.eiiiiiiiiiiiieieiiee e e 47
425..... Object 1010n: STOre PAraMETEISeiieieiee et et e et e e st e e st e e e e neee e e enneeas 48
426..... Object 1011h: ReStOre ParameEters.........c.ueiiiiiiiiiiie ettt e e 48
427 ... (O o) =Tz B 00 O U =1 o R 0 T RSP 49
428...... Object 100Dh: Life TiMeE FACOFviiiiiieee et 49
429...... Object 1013n: High Resolution Time StamPcooouiiiiiieeeiiee e 49
4.2.10.....Object 2004n: COB-ID of the High-resolution time stampccccooiiiiiiii e 50
4.2.11.....Configure the drive as @ SYNC master EXampleccoooiiiiiiiiiiiiiiicee et 50

© Technosoft 2019 3 iPOS CANopen Programming

4.2.12.....0bject 1014n: COB-ID EMeErgency ODJEC........cocuuiiiiiiiieiiii et 51

4.2.13.....0bject 1017n: Producer Heartbeat Timecooiiiiiiiiiiiiii et 51

5 Drive control and statusceeeeciiiiiiiiiiiicc s 52
5.1 CiA402 State machine and command codingccccevmmmmmrriinnnninnsrr 52
5.2 Drive control and status objectscccceviiiiiiiiiiiiniiii i —————— 54
521 ... ODbject 6040n: CONIOIWOIGveiiiiiii ettt et e e e st e e s e e e s st e e et e e e eaneeas 54
522... ODbJeCt 604 Th: STALUSWOIG. ...ttt et e e ettt et e e et e e e et e e e eaneeas 55
523..... Object 1002n: Manufacturer Status RegiSter...........coiiiiiiiiiiii e 56
524 ... Object 6060n: MOdES Of OPEIatioNc..eeiiiiiiiiiiiii it e s 56
525...... Object 6061n: Modes of Operation DiSPIayccccoiiiiiiiiiieiee e 57
5.3 Limit Switch functionality explained...........ccccooemmmiiiiiieiiiiii 57
53.1..... Hardware limit switches LSP and LSN functionalitycccueeiiiiiiiiiiiiiiee e 57
53.2...... Software limit switches fUNCHONAIILYcooiiiiiii e 58

CS 0 S =3 o e 0 4 Lo o T] 41 e St 58
541 ... Object 2000n: MOtIoN EFrOr REGISTENeiiiiiiiiiiiee ettt 58
542 ... Object 2002n: Detailed Error Register (DER)c.cooiuiiiiiiiiiieiee ettt 59
543...... Object 2009h: Detailed Error Register 2 (DER2)cooiiiiiiiiiiie et 60
544 ... Object 2003n: Communication Error Register (CER)cooiuiiiiiiiiiicee e 60
545...... Object 605An: QuICk StOP OPLION COUE........eiiiiiiiiiiiiii e 61
546 Object 605Bh: Shutdown OPtION COTE........cccuiiiiiiiiiiiiee e 61
54.7 ... Object 605Ch: Disable operation Option COUE...........uiiiiiiiiiiiiie e 62
548...... Object 605Dn: Halt OPtiON COAEcoiiiiiii ittt 62
549...... Object 605En: Fault reaction Option COAE..........oiiiiiiiiiiiii e 62
5.4.10.....Object 6007n: Abort connection OPtIoN COAEccuiiiiiiiiiiiiie e 63
5.5 Digital I/0 control and status ObjJectsccceriiiiiiiiiiiiiiiini e ———— 63
551 ... Object BOFDh: Digital INPULSeoiiiiiiie ittt ettt na e nare e 63
55.2.... Object 208Fn: Digital iNPULS 8Dtc.eiiiiiiie it 64
553..... Object BOFEn: Digital OUIPULSuiiiiiiiiie ettt 65
5.5.3.1 Example for setting the digital OUIDULScoooioiieiiiiiii et 66
554 ... Object 2090n: Digital OULPULS 8Dtcotiiiiiiiiii e 66
555...... Object 2045h: Digital OULPULS STATUSiiiiiiiiii e 67
556...... ODbjeCt 2102h: Brake STAtUS.eiiiiiiieie ettt e st e et 67
557 ... Object 2046n: Analogue iNPUt: REFEIENCEiiiiiiiiii it 68
558..... Object 2047h: Analogue input: FEEADACKcooiiiiiiii e 68
559..... Object 2055h: DC-IINK VOIBGEveiiiiiitie ettt ettt 68
5.5.10.....Object 2058h: Drive TEMPEIATUIE.........iiiiieiiie ittt ettt e et e s et e e sbn e e e anbneeennee 69
5.5.11.....Object 2108h: Filter variable 16Dtcceiiiiiie e e 69
5.6 Protections Setting ObJEcCtScceviiiiiiiiiiiiiiri i —————— 70
5.6.1...... Object 607Dn: Software poSItion lIMit..........ooouiiiiiii e 70
56.2...... Object 2050n: Over-current proteCtion [EVEIoccuuviiiiii i 70
56.3...... Object 2051h: OVEr-current tiMe OUL..........coiiiiiiiii e 71
564...... Object 2052h: MOtOr NOMINGI CUITENT. ... ueiiiiiiiee ettt e et e e ente e s nnne s 71
56.5...... Object 2053h: 12t protection integrator Mtoooriiii e 71
56.6...... Object 2054n: 12t protection SCaliNG fACIOF.........c..ooiiiiiiiiiiee e a e e 72
56.7 Object 207Fn: CUITENt IMIt........oeiei e e e 73
5.7 Step Loss Detection for Stepper Open Loop configuration...........cccceevvvvvemnnninnnnnnns 73
571..... Object 2083nh: Encoder Resolution for step 10SS protection ..o 73
57.2.... Object 2084nh: Stepper Resolution for step 10ss protectioncoveeeiiiiiiiiiii e 74
57.3..... Enabling step loss detection ProteCtion ... 75
574.....) Y o (ot o] (o] (=Ted [0 IET=Y (U o USSP PPN 75
575..... Recovering from step [0Ss detection faultcooiiiiiiii e 75
576...... Remarks about Factor Group settings when using step the loss detection............cccccooovciiiiiiiiiins 76
5.8 Drive info ObjJECtScooi i e 76
58.1...... ODJECE TO00h: DEVICE TYPE. e iitieeieitiie et iee et e ettt ettt e e et e e ettt e e s eaee e e e anbe e e e e aneeeesanneeeeantaeeeeanseeeesnneeas 76

© Technosoft 2019 4 iPOS CANopen Programming

7

58.2..... Object 6502n: Supported drive MOAESccoiiiiiiiiiiie ettt e e e 76

583..... Object 1008h: Manufacturer Device NamEcoociiiiiiiiee e 77
584 Object 100An: Manufacturer SOftWare VEIrSIONcocuiiiiiiiiieie ettt 77
585..... Object 2060n: Software version of a TML application...........c.cooiiiiiiiiiiiii e 77
586...... Object 1018h: Identity ODJECL..........ii it 78
5.9 Miscellaneous ODBjJECtS...........ceuuiiiiiiiiiiiiiiimiiiri s 79
59.1...... Object 2025n: Stepper current in 0pen-loop OPErationcooviiiiiiiiiiiiiie e 79
59.2... Object 2026n: Stand-by current for stepper in open-loop operationccoeviviiiieeiiiieee e, 79
593..... Object 2027h: Timeout for stepper stand-by CUrrent...........cocvi it 79
594 ... ODbject 2075h: POSIHION tHIGGEIScciiiiiie ittt e et e e et 80
595..... Object 2085h: Position triggered OULPULSc.eiiiiiiiii i 80
596...... Object 2076n: Save current CONfIGUratioN............oocuiiiiiiiiii e 81
597 ... Object 208Bh: Sin AD signal from Sin/COS €NCOTETccoiuiiiiiiiiiieee et 81
598..... Object 208Ch: Cos AD signal from Sin/COS @NCOTET..........cccuuiiiiiiiiieiiiee ettt 81
599..... Object 208En: Auxiliary Settings ReGISErooiiiiiiiii e 82
5.9.10.....Object 210Bn: Auxiliary Settings RegISIEr2coooiiiiiiii e 82
5.9.11.....Object 2100n: Number of steps per reVOIULION.oiiiiiiie e 83
5.9.12.....Object 2101h: Number of MiCroStEPS PEr STEP.....ciiiiiiiiiieii e 83
5.9.13.....Object 2103n: Number of encoder counts per revolUtioN............cooiuiiiiiiiiiiiiee e 83
5.9.14.....Object 209Th: LOCK EEPROMoiiiiiiiiieiiieiit ettt ettt neee e sen e 84
5.9.15.....ODbject 2092n: USEr VariabIESccoiiiiiiiiiii ittt e et e e 84
Factor group ... ————— 85
6.1 Factor group ObjJeCtS. ... e e e e 85
6.1.1...... ODBJECE BOTEN: POIAIILY ...ttt et e bt s bt e e et e e et e e e eane s 85
6.1.2...... Object 6089n: Position NOLAtION INAEXeeiiiiiiiiiii e 85
6.1.3...... Object 608An: Position diMENSION INAEXeiriiiiiiiiiii ittt 86
6.14.... Object 608Bh: Velocity NOtAtioN INAEXcoiiiiiiiiiiiii e 86
6.1.5...... Object 608Ch: VelocCity diMenSION INAEXccuiiiiiiiiiiiiiee ittt 86
6.16...... Object 608Dn: Acceleration NOTAtioN INAEXciiiiiiiiiiiiei e 87
6.1.7 Object 608En: Acceleration dimension INAEX.........c.couiuiiiiiiiiiiiie e 87
6.1.8...... Object 206Fn: Time NOtAtION INAEXooiuiiiiiiiie et 87
6.19...... Object 2070n: TimMe diMENSION INAEX.......viiiteiiiii ittt ettt sb e sae e saee e 88
6.1.10.....Object 6093h: POSItION fACIOT....... .ttt et 88
6.1.10.1 Setting the numerator and divisor in a factor group object. Examplecccccoeevoeeveeceeencnennn. 89
6.1.11..... Object 6094n: VeloCity @NCOET FACTONcoiuiiiiiiiiie e 89
6.1.12.....Object 6097h: ACCEIEIation fACIOTc.uiiiiiiii ittt e e e e 90
6.1.13.....ObJECt 207 1h: TIME FACIOT.......ei ittt ettt ettt be et e nne e et e e nnee e e 90
Homing Modeo i 91
4% B © 1Y =Y V- SO 91
7.2 Homing Methods.........ccuiiiiiiiiiiiiiiiiiisis s rrnrnen 92
721 Method 1: Homing on the Negative Limit Switch and Index Pulsecccccooiiiiiiiiiiiii e 92
722...... Method 2: Homing on the Positive Limit Switch and Index Pulse.............ccccooii s 92
7.23...... Methods 3 and 4: Homing on the Positive Home Switch and Index Pulse.ccccccooiiiiiiiiiiieeen. 92
724 ... Methods 5 and 6: Homing on the Negative Home Switch and Index Pulse.cccccoiiiiiinnes 93
725...... Methods 7 to14: Homing on the Home Switch using limit switches and Index Pulse.cccuee.. 93
7.26...... Methods 17 to 30: Homing without an INdeX PUISEoooeiiiiiii e 95
7.2.7 Method 17: Homing on the Negative Limit SWItCh............cooiiiiiiiiiiiiiie e 95
728 Method 18: Homing on the Positive Limit SWItChcooiiiiiiiii e 95
7.29...... Methods 19 and 20: Homing on the Positive Home Switch and Index Pulse.ccccocviiiiiiiiiieeene 95
7.2.10.....Methods 21 and 22: Homing on the Negative Home SwitChccccooiiii e, 95
7.211..... Methods 23 t030: Homing on the Home Switch using limit sWitChes............coccoiiiiiii e 96
7.2.12.....Methods 33 and 34: Homing on the INAEX PUISEccuuiiiiiiiii et 97
7.2.13.....Method 35: Homing on the Current POSItIONcccuiiiiiiiiii e 97
7.2.14.....Method -1: Homing on the Negative Mechanical Limit and Index Pulsecccooiiiiiiiiiiiiiinineen.. 97
7.2.14.1 Method -1 based 0n MOtOr CUITENE INCEASEcccocueeeeeiiiieeiee et 97
7.2.14.2 Method -1 based 0n Step 10SS AEIECHON............ccovcueeiiiiiieeee e 98

© Technosoft 2019 5 iPOS CANopen Programming

7.2.15.....Method -2: Homing on the Positive Mechanical Limit and Index Pulsecccccoiiiiiiiiiniiie. 98

7.2.15.1 Method -2 based 0n MOtOr CUITENT INCIEASEcccovueeeieciiii ettt 98
7.2.15.2 Method -2 based 0N StepP 0SS AEIECHON.uuuuueee e 98
7.2.16.....Method -3: Homing on the Negative Mechanical Limit without an Index Pulse.cccoeiiiiinennis 99
7.2.16.1 Method -3 based 0n Motor CUITENTE INCIEASEccccueeeeecirieeeceee e 99
7.2.16.2 Method -3 based 0N StepP 0SS AEIECHON.uuuueeee s 99
7.2.17.....Method -4: Homing on the Positive Mechanical Limit without an Index Pulse..............cccccoociiininnen. 100
7.217.1 Method -4 based 0n MOotOr CUITENE INCIEASEccovcueeeeeciieeeeeee e 100
7.2.17.2 Method -4 based 0N StepP 0SS AEIECHON.uuuueeeee s 100

7.3 Homing Mode ODBJECtScceerirmmimiimiimiiinnisssrsrssss s rnnnnn 101
7.31 ... Controlword in NOMING MOTEcooiiiiiiiii et e et e e 101
7.32.... Statusword in hOMING MOGE.........cooiiiiiii et e st 101
733..... Object B07Ch: HOME OffSEL........iiiiiiiie et 101
734 ... Object 6098h: HOMING MELNOM ...t 102
7.35...... Object 6099h: HOMING SPEEAS........eiiiiiiiieit ettt ettt a et ne et nnee e 102
7.36...... Object 609An: HOMING @CCEIETALIONco..eiiiiiiiie e 103
7.3.7...... Object 207Bn: Homing current threshold.............cociiiiiiiiiiii e 103
7.38...... Object 207Ch: Homing current threshold timeoooiiiiiiiii e 104
7.4 Homing eXamplecceeiiiimiiimmimiiisiissssssss s s s s s nsnnnnnn 104
8 Position Profile Mode ... s 106
LR T © 1Y = T 106
8.1.1..... Discrete motion profile (change setimmediately = 0)cccoouiiiiiiiieiiiiie e 106
8.1.2...... Continuous motion profile (change set immediately = 1).......c.coouiiiiiiiiiii e 106
8.13...... Controlword in profile POSItioN MOcooiiiiiiii e 107
814 ... Statusword in profile POSItioN MOTEc.c.uuiiiiiie e 107
8.2 Position Profile Mode ObjJects..........ccccovi s 107
8.21...... Object 607An: TaArget POSITIONcooiiiiieiiiiee ettt et e e b e e e abe e e e naee 107
8.22... Object 6081h: Profile VEIOCITYccoiiuiiiiiiiei et 108
8.23...... Object 6083h: Profile @CCIEIratioNcoiuiiiiiiiiee e 109
8.24 ... Object 6085n: Quick StOP AECEIBTAtIoNcoiiiiiiiiiiiii e 109
8.25...... ODBjJECt 20230 JEIK M@ ...ttt ettt ettt a et ne et nne e 109
8.26...... Object 6086h: MOtION Profile tYPEoiiiiiieie e 110
8.2.7 ... Object 6062n: Position demand VAlUEccoouiiiiiiiiiieiie et 110
8.28..... Object 6063h: Position actual internal Valueoooiiiiiiiiii e 110
8.29...... Object 6064h: POSItion @Ctual VAIUE...........cccuiiiiiiiiii it 110
8.2.10.....Object 6065n: FOIOWING €ITOr WINAOWcoiuiiiiiiiiiiieriie ettt ettt nine s 111
8.2.11.....Object 6066h: FOIOWING €rTOr tiMeE OULoiiiiiiiiiiii e 111
8.2.12.....Object 6067h: POSItION WINAOW.......ccoiiiiiiiiiie ettt e e e e e s e e s e ee s 112
8.2.13.....Object 6068h: POSItion WINAOW tIMEcoiuiiiiiiiiee it e e e e 112
8.2.14.....Object 607Bn: POSItion range liMit..........coociiiiiiiiiii e 112
8.2.15.....Object 60F2n: PoSitioning OPtioN COUEcoiiiiiiiiiiiiie e 113
8.2.16.....Object 60F4n: Following error actual ValUe..............ccuiiiiiiiiiiiiee e 115
8.2.17.....Object 60FCh: Position demand internal ValUe.............ccuuviiiiiiiiiiiiiiic et 115
8.2.18.....Object 2022n: CONrol €ffOrt........ .o e e 115
8.2.19.....Object 2081h: Set/Change the actual motor POSItIoN............ccoeiiiiiiiiiiee e 115
8.2.20.....Object 2088h: Actual internal position from SENSOr 0N MOLOT..........c.eviiiiiiii i 116
8.2.21.....Object 208Dn: Auxiliary €ncoder POSITIONeiiiiiiiiiiie e 116
8.3 Position Profile EXamples ... 116
8.3.1...... Absolute trapezoidal EXAMPIEcoiiiiiiiiiie et e e e e e e e e s e e e e e e e annnaes 116
8.3.2...... Absolute Jerk-limited ramp profile @Xampleoouiiiiii 118

9 Interpolated Position Mode.............cici e 120
L2 Tt T © = VT 120
9.1.1...... INTEINAI SEAIES ...t ettt 120
91.2...... Controlword in interpolated position MOdeooiiiiii e 120
913 Statusword in interpolated poSition MOAEcooiiiiiiiiie e 121

© Technosoft 2019 6 iPOS CANopen Programming

9.2 Interpolated Position Objects..........cccccmiiiiiiiiiii s 121

9.2.1...... Object 60COh: Interpolation SUD MOAE SEIECEc..eiiiiiiiiiiee e 121
9.2.2...... Object 60C1h: Interpolation data rECOIdeiiiiiiiie e e e e 122
9.2.2.1 a) For linear interpolation (standard DS402 implementation)..............ccccovevcoueisioeeeesiee e 122
9.2.2.2 b) For PT (Position —Time) linear interpolation (I6gacy).ccoeeueieiimioiieiiieeeecee e 122
9.2.2.3 c¢) For PVT (Position — Velocity — Time) cubic interpolation.................c.cccocceeeinceeeasiiiieseee e 123
9.23...... Object 2072h: Interpolated position Mode Status...........cceeiiiiiieiiiie e 124
9.24 Object 2073n: Interpolated position buffer length ... e 124
9.25...... Object 2074n: Interpolated position buffer configuration...............cccooriiii e 125
9.26...... Object 2079n: Interpolated position initial POSIHIONciiiiiiii e 125
9.2.7 Object 207An: Interpolated position 15t order iMe............cccocvieiiiieieeceee e 125
9.28...... Loading the interpolated POINTSoooieiii e 126
9.3 Linear interpolation example...........ccooiiiciiinrrrr e 126
9.4 PT absolute movement example ... e 126
9.5 PVT absolute movement example...........cooociiimiciiiircr s e e e 128
9.6 PVT relative movement example.......... o rieciiiiiccsi s rr s e rs s e r s s e s 132
10 Cyclic Synchronous Position mode (CSP)ccciiiiiiiiiiiinen, 135
R O © 1Y =T T 135
10.1.1.....Controlword in Cyclic Synchronous Position Mmode (CSP)cccviiiiiiiiiiiee e 135
10.1.2..... Statusword in Cyclic Synchronous Position mode (CSP)........ccccciiiiiriiieeeee e 135
10.2 Cyclic Synchronous Position Mode Objects..........ccccommmriemmccnninerrnre e 136
10.2.1.....Object 60C2n: Interpolation tiMe PEriOdcooiiiiiiiiei e 136
10.2.2.....Object 2086h: Limit SPEEd fOr CSP........ueiiiiiiiieeeee e et 136
10.3 Cyclic Synchronous Position Mode examplecccccciiniiiiinmmnnnsneeeeen 137
10.4 Configuring Technosoft CANopen Drives for NC-PTP (CSP) operation in
TWINCAT 3. s s sssssssssssssnssnssnnnnnnnnnnn 142
10.4.1.....Create a new project and scan for the drives............occueei i 142
10.4.2.....Setting the SYNC-TXPDO DEIAYueiiiiiiieiiiie ettt e et e s te e e st a e s ennee e e aneeeeennneeeeanneeas 143
10.4.3..... AddIiNG NEW NC-PTP @XES ...ttt ettt ettt e e e e e ettt e e e e e e e e nnneeeeeeeeeeannenee 144
10.4.4.....NC-PTP AXIS SEHINGS. ... eeiiiiiiiie ittt eb e e st e e b e e e et e e naneeas 144
10.4.5..... Setting the CAN communication CyCle tiMeooiiiiiiiiie e 145
10.4.6.....Configuring the TWINCAT PDO [2YOUL........ccuiiiiiiiiiiiiiee it 146
10.4.6.1 Setting the PDOS @S SYNCRAIONOUScoeeiuiieeeeee e e e e e e eea e seaeennee e e 148
10.4.7.....Adding start-up SDO drive configuration MESSAGES.c.cccuuiiiiiiiieiiiiee et 148
10.4.7.1 Mapping ObJECES 10 RXPDOToooeeee ettt e e e e s e e e eneeeennns 148
10.4.7.2 Mapping OBJECES 10 TXPDOT ...ttt a e e e e e e e e e e e nnnnes 149
10.4.7.3 Setting Modes of Operation t0 CSP MOAEuueeeiieeeeeeee e 150
10.4.7.4 Setting the interpolation OBJECTcoo i 150
10.4.7.5 Setting object 1006n to 0; Synchronization isSsue Workaround................cccceeeeeeeciuveeeseeseesnnnnn. 151
10.4.8.....Linking drive PDO data variables to internal NC-PTP variables.............cccccoiiiiiiiiiiiieeeee 151
10.4.8.1 Linking standard NC-PTP Vali@bIESuuuueeieeieeiie e eeeeeeeee ettt e e e e 151
10.4.8.2 Linking the home input INO to the HomingSensor of the NC-PTP interface.............ccccccccevevunae. 153
10.4.9.....Enabling and testing the NC-PTP interface in TWINCAT ... 153
10.4.10... Setting Controlword bit 14 t0 1 (OPHONAI)ccceiiiiiiiiieee et e e e s 154
11 Velocity Profile Mode..........ccooiiii 157
1.1 L0 =Y RSOt 157
11.1.1.....Controlword in Profile VeloCity MOeot 157
11.1.2..... Statusword in Profile VElOCIty MOAE............oooiiiiiiiiiiiie e e e 157
11.2 Velocity Mode ODBjJECtS.......cccceemmiiiiiiieeier s 157
11.2.1.....Object 6069n: Velocity SeNSOr actual ValUEooiiiiiiiiiiiiiiic e 157
11.2.2.....Object 606Bh: Velocity demand ValUEcoooiiiiiiiei e 158
11.2.3.....Object 606Ch: Velocity actual ValUEc.oooiiiiiiiiiee e 158
11.2.4.....Object 606Fn: Velocity threSholdcoiiiiiii e e 158

© Technosoft 2019 7 iPOS CANopen Programming

11.2.5.....0bject BOFFh: Target VEIOCITYc.uviiiiiiiiei ettt e 158

11.2.6.....Object B0F8h: MaX SIIPPAGEcceiiiiieiiiiee ettt e et 159
11.2.7.....Object 2005h: Max slippage time OUL.........coouiiiiiiiie e e s 159
11.2.8.....Object 2087n: Actual internal velocity from Sensor on MOtOr..........cocuiiiiiiiiiiinc e 160
11.3 Speed profile exampleccccmriiiiiiiiii i ————————— 160
12 Electronic Gearing Position (EGEAR) Mode............ccccocmmmrrriinnniniissnnnnnnneennnnns 162
121 L0 1= S 162
12.1.1.....Controlword in electronic gearing position mode (SIave axiS)ccocvveriiieeriiiie e 162
12.1.2..... Statusword in electronic gearing PoSition MOUEeiiiiiiiiiiiiii e 162
12.2 Gearing Position Mode ODbJectscccccccoiiiiimiiiimcrrr e s e 163
12.2.1.....0Dbject 2010n: MaSter SEHINGSiiiiiiiiieiii ettt e 163
12.2.2.....0bject 2012h: MaSter r@SOIULIONcoiiiiieeiiee e e e e e e st e e e et e e e e nee e e e enneeas 163
12.2.3.....Object 2013n: EGEAR multiplication factorooiiiiiiiiie e 163
12.2.4.....0bject 2017n: Master actual POSItION.uoiiiiiiiiiiii e 164
12.2.5.....0bject 2018h: Master actual SPEEAcooiiiiiiiiiii i 164
12.2.6.....0bject 201Dn: External RefErenCe TYPEcccuiiiiiiiiiiiiiieit ettt 164
12.3 Electronic gearing through CAN example...........ccccciiiiiii, 165
13 Electronic Camming Position (ECAM) Modeccooiiiirreemccciei e, 167
13.1 L0 1= OOt 167
13.1.1.....Controlword in electronic camming PoSition MOEcccuuiiiiiiiiiiiiiee e 167
13.1.2..... Statusword in electronic camming POSItioN MOAEccoiiiiiiiiiiiiiiiee s 168
13.2 Electronic Camming Position Mode Objectsccomiiiemcccciiiiiirircccnn e 168
13.2.1.....0bject 2019n: CAM table 10ad @AAreSSccuiiiiiiiiiiiiee ittt 168
13.2.2.....0bject 201An: CAM table run @ddreSScccuiiiiiiiiieiiiie ettt 168
13.2.3.....0Dbject 201Bh: CAM OFfSEEcueiiiiiiiiett ettt 169
13.2.4.....0bject 206Bh: CAM: input SCalING fACONcoiuiiiiiiiiii e 169
13.2.5.....Object 206Ch: CAM: output SCalING fACIOT........coiiuiiiiiiiie e 169
13.2.6.....Building a CAM profile and saving it as an .sw file eXxamplecccceiiiiiiniin e 170
13.2.6.1 Extracting the cam data from the motion and Setup .SW fileoccoveeeioiiiiisiiii e 173
13.2.6.2 Downloading a CAM .sw file with objects 2064n and 2065n example..................ccccccoeevvencueennne. 174

13.3 Electronic camming through CAN example..........ccccciiiiiii . 175
14 External Reference Position Mode ..o 177
14.1 L0 =Y OOt 177
14.1.1.....Controlword in external reference position MOAEcoooviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 177
14.1.2..... Statusword in external reference position MOAEcooiiiiiiiiiiiii i 177
14.2 External Reference Position Mode Objects..........cccccmriiiiiiiiiiiiennn e 177
14.2.1.....Object 201Ch: External On-line Position Reference. ... 177
14.3 External reference position profile exampleccccviiiiiiiiiii e, 178
15 External Reference Speed Mode..........ccoooiiiiiiiiiiiiiiiiniirrrr e 179
15.1 L0 =Y SOt 179
15.1.1.....Controlword in external reference speed MOUEcoovvviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 179
15.1.2..... Statusword in external reference sSpeed MOUEcooeiiiiiiiiiiiiiiie e e e 179
15.2 External reference torque mode objects...........ccoovmmmiiiiiiiiiiniir 180
15.2.1.....Object 201Cn: External On-line Speed Referencecccccvviiiiiiiiiiii e 180
15.3 External reference speed profile example..........cccccerriiiiiiiiiiiececieee e, 180
16 External Reference Torque Modeiimcciiinirrr s 181
0t N © 1Y =T T 181

© Technosoft 2019 8 iPOS CANopen Programming

16.1.1.....Controlword in external reference torque MOdEoooo i 181

16.1.2..... Statusword in external reference torque MOdeoooi i 181
16.2 External reference torque mode objects.........cceuuciiiiiiiiiicsccccr e 182
16.2.1.....Object 201Ch: External On-line Torque RefErenceccuoviiiiiiiiie e 182
16.2.2.....0bject 6077h: Torque actual ValUEccoouiiiiiiiiiiiie e et 182
16.2.3.....Object 207En: Current aCtual ValUEccoouiiiiiiiii et e e et e e e e e s 183
16.3 External reference torque profile example............ccoomimmiiccciiiirrrr s 183
17 Touch probe functionality ... 185
171 L0 1= OOt 185
17.2 Touch probe ObJECtS......ccceeeeiii i 185
17.2.1.....Object 60B8h: Touch probe FUNCHONccoouiiiiiii e e 185
17.2.2.....0Object 60B9n: TOUCh Probe StAtUSeiiiiiiiiii e 186
17.2.3.....0bject 60BAn: Touch probe 1 POSItiVe @AGE........cueriuiiiiiiiiii it 186
17.2.4.....0bject 60BBh: Touch probe 1 Negative 8Agecoiuiiiiiiiiiiiii e 187
17.2.5.....Object 60BCh: Touch probe 2 pOSitive €Ac.eeiiiiiiiiiiiiie et 187
17.2.6.....Object 60BDn: Touch probe 2 negative €dgecoouiiiiiiiiiiiee e 187
17.2.7.....Object 2104n: Auxiliary @ncoder FUNCONcooiiiiiiiiee e 187
17.2.8.....0bject 2105n: Auxiliary €NCOEr STAIUScocuiiiiiiiiii it 188
17.2.9.....Object 2106n: Auxiliary encoder captured position positive €dge.........cccccvveiiiiiii i 188
17.2.10...Object 2107n: Auxiliary encoder captured position negative €dgecoceeriiiiiiniieneence e 189
17.3 Touch probe eXxample ... e s e e nnnernnns 189
18 Data Exchange between CANopen master and drivescccccvmmrreeennnnnnnn. 190
18.1 Checking Setup Data ConsisStencyccccccviiiiiiimmnnrr 190
18.2 Image Files Format and Creation...........ccceviiiiiiiiiii 190
18.3 Data Exchange ODbjJectscccccriiiiiiiiimeimni s 191
18.3.1.....Object 2064n: Read/Write Configuration ReGISTEr............coiiiiiiiiiiiiiii e 191
18.3.2.....Object 2065n: Write 16/32 bits data at address set in Read/Write Configuration Register 191
18.3.3.....Object 2066n: Read 16/32 bits data from address set in Read/Write Configuration Register.............. 192
18.3.4.....Object 2067n: Write data at specified addressccooviiiiiiiiiiiiii e 192
18.3.4.1 Writing 16 bit data to a specific address using object 2067n example.............cccccccvvevccveevncnenn. 193
18.3.5.....Object 2069n: Checksum configuration registercouiiiiiiiiiiiii e 193
18.3.6..... Object 206An: ChecksUmM read regISTENuii it 193

18.4 Downloading an image file (.sw) to the drive using CANopen objects example
194

18.5 Downloading an image file (.sw) to the drive using CANopen objects C# example
code 194

TR T N I o 1= o 4 F= T g T =Tl 4 L oo Yo [YN 195
18.5.2.....The function Write_ SWHIIlE COUEcovviiiiiiiiieeieeeeeeeeeeeeeeeeeeeeee ettt e e e e e e e e e e e eeees 195
18.6 Checking and loading the drive setup via SW file using CANopen commands
EXAMPIE. ... aaaan 197
18.7 SW file Checksum calculation C# example code...........ccceviiiiiiiiiiiiiiiniiniiiinnnnnn, 198
18.7.1.....The checksum CalCulation COAEooi it e e e e e e e e e e e nneeee 198
19 Advanced featurescccccccciiiiiiiirieeeccis e s 200
19.1 Using EasyMotion Studio.........cccceviiiiiiiiiieiin s 200
19.1.1.....S1ArtiNG @ NEW PIOJECTeiiiiiiiiiiiie ettt e et e e e e e et e e e e e e e et a e e e e e e e s e sabeeeeaeeesaansssseeeaaeseannnnnes 200
19.1.2.....Choosing the drive, motor and feedback configurationcccooiii e 200
19.1.3.....Downloading setup data to drive/MOTOrcciiiiiiiiiie e e e e e e e e 202
19.2 Using TML Functions to Split Motion between Master and Drives.................... 202
19.2.1.....Build TML functions within EasyMotion StUdiO............cccoiiiiiiiiiiiiiii e 202

© Technosoft 2019 9 iPOS CANopen Programming

19.2.2..... TML FUNCHON ODJECLSeiiiieiiiieie ettt ettt e e e ettt e e e e e e e et eeaaaeeaannseeeeaaeeaaannnees 202

19.2.2.1 Object 2006n: Call TML FUNCHONc.cveveeeeeeieiereriseseisieeeeieiseeiei e 202
19.3 Executing TML programsccccciiiiiiiiiininisissssssssssssssssssssss s 203
19.3.1.....Object 2077h: EXECULE TIMIL PrOGIamcieiiiiiieeeiieeeeiiiee et e e et e e e st e e e et e e e snee e e s emneeeeanteeeeenneeeesanneeas 203
19.4 Loading Automatically Cam Tables Defined in EasyMotion Studio................... 203
RS B O N 1V I =1 o] L= 4 o L8] S 204
19.5 Customizing the Homing Procedures..........ccccciiiiiiiiiiiiinnnnnnn 204
19.6 Customizing the Drive Reaction to Fault Conditionsccccoommmmiimcicciiniinnnns 204

© Technosoft 2019 10 iPOS CANopen Programming

Read This First

Whilst Technosoft believes that the information and guidance given in this manual is correct, all parties must
rely upon their own skill and judgment when making use of it. Technosoft does not assume any liability to anyone for
any loss or damage caused by any error or omission in the work, whether such error or omission is the result of
negligence or any other cause. Any and all such liability is disclaimed.

All rights reserved. No part or parts of this document may be reproduced or transmitted in any form or by any
means, electrical or mechanical including photocopying, recording or by any information-retrieval system without
permission in writing from Technosoft S.A.

The information in this document is subject to change without notice.

About This Manual

This manual describes how to program Technosoft iPOS family of intelligent drives using CANopen protocol.
The iPOS drives are conforming to CiA 301 v4.2 application layer and communication profile, CiA WD 305 v.2.2.13'
Layer Setting Services and to CiA (DSP) 402 v4.0 device profile for drives and motion control, now included in IEC
61800-7-1 Annex A, IEC 61800-7-201 and IEC 61800-7-301 standards. The manual presents the object dictionary
associated with these three profiles. It also explains how to combine the Technosoft Motion Language (TML) commands
and the CANopen protocol commands in order to distribute the application between the CANopen master and the
Technosoft drives.

In order to operate the Technosoft iPOS drives, you need to pass through 3 steps:

U Step 1 Hardware installation

O Step 2 Drive setup using Technosoft EasySetup software for drive commissioning

4 Step 3 Motion programming using one of the options:

A CANopen master

The drives built-in motion controller executing a Technosoft Motion Language (TML) program
developed using Technosoft EasyMotion Studio software

A TML_LIB motion library for PCs (Windows or Linux)

A TML_LIB motion library for PLCs

A distributed control approach which combines the above options, like for example a host calling motion
functions programmed on the drives in TML

o000 OO0

This manual covers an introductory part of Step 2 and Step 3/ Motion programming using the CANopen protocol
in detail.

For Step 1, please consult the drive User Manual, where a detailed hardware installation is described.

Scope of This Manual

This manual applies to the iPOS family of Technosoft intelligent drives.

Notational Conventions

This document uses the following conventions:
TML — Technosoft Motion Language
iPOS — a Technosoft drive family, the code is usually iPOSxx0x xx-CAN

GUI — Graphical User Interface

IU — drive/motor internal units

IP — Interpolated Position

RegisterY.x- bit x or register Y; Example: Controlword.5 — bit 5 of Controlword data
cs — command specifier

Axis ID or CAN ID or COB ID — the unique number allocated to each drive in a network.
RO - read only

RW - read and write

SW - software

H/W or HW - hardware

' Available only with the firmware F514x.

© Technosoft 2019 11 iPOS CANopen Programming

Related Documentation

Help of the EasySetup software — describes how to use EasySetup to quickly setup any Technosoft drive
for your application using only 2 dialogues. The output of EasySetup is a set of setup data that can be
downloaded into the drive EEPROM or saved on a PC file. At power-on, the drive is initialized with the
setup data read from its EEPROM. With EasySetup it is also possible to retrieve the complete setup
information from a previously programmed drive. EasySetup can be downloaded free of charge from
Technosoft web page

Technical Reference Manual of each iPOS drive version — describes the hardware including the technical
data, the connectors, the wiring diagrams needed for installation and detailed setup information.

Motion Programming using EasyMotion Studio (part no. P091.034.ESM.UM.xxxx) — describes how to use
the EasyMotion Studio to create motion programs using in Technosoft Motion Language (TML).
EasyMotion Studio platform includes EasySetup for the drive/motor setup, and a Motion Wizard for the
motion programming. The Motion Wizard provides a simple, graphical way of creating motion programs
and automatically generates all the TML instructions. With EasyMotion Studio you can fully benefit from
a key advantage of Technosoft drives — their capability to execute complex motions without requiring an
external motion controller, thanks to their built-in motion controller. A demo version of EasyMotion
Studio (with EasySetup part fully functional) can be downloaded free of charge from Technosoft
web page

TML_LIB v2.0 (part no. P091.040.v20.UM.xxxx) — explains how to program in C, C++, C#, Visual Basic or
Delphi Pascal a motion application for the Technosoft intelligent drives using TML_LIB v2.0 motion
control library for PCs. The manual includes over 40 ready-to-run examples that can be executed on
Windows or Linux (x86 and x64)

TML_LIB_LabVIEW v2.0 (part no. P091.040.LABVIEW.v20.UM.xxxx) — explains how to program in
LabVIEW a motion application for the Technosoft intelligent drives using TML_LIB_LabVIEW v2.0 motion
control library for PCs. The manual includes over 40 ready-to-run examples.

TML_LIB_S7 (part no. P091.040.S7.UM.xxxx) — explains how to program a PLC Siemens series S7-300 or
S7-400 with a motion application for the Technosoft intelligent drives using TML_LIB_S7 motion control
library. The manual includes over 40 ready-to-run examples. The library is PLCOpen compatible.

TML_LIB_CJ1 (part no. P091.040.CJ1.UM.xxxx) — explains how to program a PLC Omron series CJ1 with a
motion application for the Technosoft intelligent drives using TML_LIB_CJ1 motion control library for
PCs. The manual includes over 40 ready-to-run examples. The library is PLCOpen compatible.

TML_LIB_X20 (part no. P091.040.X20.UM.xxxx) — explains how to program in a PLC B&R series X20 a
motion application for the Technosoft intelligent drives using TML_LIB_X20 motion control library for
PLCs. The TML_LIB_X20 library is IEC61131-3 compatible

TechnoCAN (part no. P091.063.TechnoCAN.UM.xxxx) — presents TechnoCAN protocol — an extension of
the CANopen communication profile used for TML commands

If you Need Assistance ...

If you want to ... Contact Technosoft at ...

Visit Technosoft online World Wide Web: http://www.technosoftmotion.com/
Receive general information World Wide Web: http://www.technosoftmotion.com/
or assistance (see Note) Email: contact@technosoftmotion.com

Ask questions about product Fax: (41) 32 732 55 04

operation or report suspected

problems (see Note) Email: hotline@technosoftmotion.com

Make suggestions about, Mail: Technosoft SA

or report errors in documentation.
Avenue des Alpes 20
Ch-2000 Neuchatel, NE
Switzerland

© Technosoft 2019 12 iPOS CANopen Programming

http://www.technosoftmotion.com/
http://www.technosoftmotion.com/
mailto:hotline@technosoftmotion.com

1 Getting Started

1.1 Setting up the drive using EasySetup or EasyMotion Studio

111 What are EasySetup and EasyMotion Studio?

EasySetup is a PC software platform for the setup of the Technosoft drives. Via EasySetup you can quickly commission
any Technosoft drive for your application using only 2 dialogues.

The output of EasySetup is the setup data that can be stored into the drive EEPROM or saved on a PC file. The setup
data contains all the information needed to configure and parameterize a Technosoft drive. At power-on, the drive is
initialized with the setup data read from its EEPROM. EasySetup may also be used to retrieve the sefup data previously
stored in a drive EEPROM.

EasySetup also includes evaluation tools like: Data Logger, Control Panel and Command Interpreter which help you to
quickly measure, check and analyze your drive commissioning.

EasyMotion Studio is an advanced PC software platform that can be used both for the drives setup and for their motion
programming. With EasyMotion Studio you can fully benefit from a key advantage of the Technosoft drives — their
capability to execute stand-alone complex motion programs thanks to their built-in motion controller.

EasyMotion Studio includes EasySetup for the drive setup, and a Motion Wizard for the motion programming. The
Motion Wizard provides a simple, graphical way of creating motion programs written in Technosoft Motion Language
(TML). It automatically generates all the TML instructions, hence you do not need to learn or write any TML code. Via
TML you can:

4 Set various motion modes

Change the motion modes and/or the motion parameters
Execute homing sequences

Control the program flow through:

o Conditional jumps and calls of TML functions

o Interrupts generated on pre-defined or programmable conditions (protections triggered, transitions of limit
switch or capture inputs, etc.)

o Waits for programmed events to occur
U Handle digital I/0 and analogue input signals
U Execute arithmetic and logic operations

The output of EasyMotion Studio is the application data that can be loaded into the drive EEPROM or saved on a file.
The application data includes both the setup data and the TML motion program.

Using TML, you can really simplify complex applications, by distributing the intelligence between the master and the
drives. Thus, instead of trying to command each step of an axis movement from the master, you can program the drives
using TML to execute complex tasks, and inform the master when these tasks have been completed.

000

Important: You need EasyMotion Studio full version, only if you use TML programming. For electronic camming
applications, you need the free of charge EasyMotion Studio demo version to format the cam data. For all the other
cases, you can use the free of charge EasySetup.

1.1.2 Installing EasySetup or EasyMotion Studio

EasySetup and EasyMotion Studio demo version can be downloaded free of charge from Technosoft web page.
Both include an Update via Internet tool through which you can check if your software version is up-to-date, and when
necessary download and install the latest updates.

EasyMotion Studio demo version includes a fully functional version of EasySetup, hence you do not need to install
both of them.
You can install the EasyMotion Studio full version in 2 ways:

Using the CD provided by Technosoft. In this case, after installation, use the Update via Internet tool to check for the
latest updates;

Transforming EasyMotion Studio demo into a full version, by introducing in the application menu command Help |
Registration Info the serial number provided by Technosoft.

The 2" option is especially convenient if the EasyMotion Studio demo version is already installed.

Remark: The next paragraphs present only the drive commissioning with EasySetup. Par. 19.1.1. shows how to perform
the same steps with EasyMotion Studio demo or full version.

© Technosoft 2019 13 iPOS CANopen Programming

113 Establishing serial communication with the drive

EasySetup communicates with the drive via an RS-232 serial link or CAN interface. If your PC has no serial port, use
an USB to RS232 adapter. For the serial connections, refer to the drive Technical Reference manual. If the drive or the
Starter Kit board accompanying the drive has a 9-pin serial port, use a standard 9-wire, non-inverting (one to one) serial
cable.

Figure 1.1.1. EasySetup - Opening window

All Technosoft drives with CAN interface have a unique AxisID (address) for serial communication. The AxisID value is
by default 255 or it is set by the levels of the AxisID selection inputs, when these exist.

Remark: When first started, EasySetup tries to communicate via RS-232 and COM1 with a drive having axis ID=255
(default communication settings). When it is connected to your PC port COM1 via an RS-232 cable, the communication
shall establish automatically.

If the communication is established, EasySetup displays in the status bar (the bottom line) the text “Online” plus the
axis ID of your drive/motor and its firmware version. Otherwise, the text displayed is “Offline” and a communication
error message tells you the error type. In this case, use menu command Communication | Setup to check/change
your PC communication settings. Check the following:

Channel Type: RS232 or CAN interface
CAN Protocol: CANopen or TechnoCAN (protocol does not matter if channel type is RS232)
Port: Select the COM port where you have connected the drive
Baud rate: can be any value for RS232 and it is automatically detected. For best performance, we recommend to use
the highest value: 115200. For a CAN interface, choose the default baud rate 500 Kbps.
Remark: Once the communication is established, you can reopen the Communication | Setup dialogue and
change the baud rate

Axis ID of drive/motor: connected to PC (autodetected) for RS232 or the CAN Axis ID which is by default 127 in
CANopen.

Close the Communication | Setup dialogue with OK and check the status bar. If the communication is established, the
text “Online” shall occur in the status bar. If the communication is still not established, check the serial cable connections
and the drive power. Refer to the Technical reference manual of the drive for details.

Remark: Reopen the Communication | Setup dialogue and press the Help button. Here you can find detailed
information about communication setup and troubleshooting.

1.1.4 Choosing the drive, motor and feedback configuration

Press New button and select your drive category: iPOS Drives (all drives from the new iPOS line), Plug In
Drives (all plug-in drives, except iPOS line), Open Frame Drives, (all open-frame drives except iPOS line), Closed Frame
Drives (all close-frame drives except iPOS line), etc. If you do not know your drive category, you can find it on Technosoft
web page.

Continue the selection tree with the motor technology: rotary or linear brushless, brushed, 2 or 3 phase stepper, the
control mode in case of steppers (open-loop or closed-loop) and type of feedback device, if any (for example: none or
incremental encoder).

© Technosoft 2019 14 iPOS CANopen Programming

Figure 1.1.2. EasySetup — Selecting the drive, motor and feedback

The selection opens 2 setup dialogues: for Motor Setup and for Drive setup through which you can introduce your
motor data and commission the drive, plus several predefined control panels customized for the drive selected.

1.1.5 Introducing motor data

Figure 1.1.3 shows the Motor setup dialogue where you can introduce the data of your motor and the associated
sensors. Use the Guideline Assistant, and follow the steps described. This will guide you through the whole process
of introducing and/or checking the motor and sensors data. Use the Next button to see the next guideline step and the
Previous button to return to the previous step. Data introduction is accompanied by a series of tests having as goal to
check the connections to the drive and/or to determine or validate a part of the motor and sensors parameters.

When finished, click on Drive Setup button to move to the 2nd dialogue.

Remark: Press the Help button from the Motor setup dialogue for detailed information

Figure 1.1.3. EasySetup — Introducing motor data

1.1.6 Commissioning the drive; configuring motor tuning and protections

Figure 1.1.4 shows the Drive setup dialogue where you can configure and parameterize the drive for your application.

© Technosoft 2019 15 iPOS CANopen Programming

Figure 1.1.4. EasySetup — Commissioning the drive

Newer iPOS firmwares have an auto tuning feature. Assuming the motor data was entered or identified correctly, just
click on any “Tune & Test” button and a new window will appear.

Figure 1.1.5. EasySetup — Auto tuning interface

Click the Start button and wait for the procedure to finish.
Once the procedure is finished, the tuning can be tested by pressing the newly appeared “Test tuning button”.

Test
Test tuning

Just click start and observe the motor move. If the Load position follows the Target position without error, then the tuning
is OK.

© Technosoft 2019 16 iPOS CANopen Programming

Figure 1.1.6. EasySetup — Testing the motor tuning

Eventually, if the motor vibrates or a softer tuning is needed, manually decrease the Kp, Ki and Kd gains.

Click Stop and wait for the test to stop. Click Ok to exit the window and keep the newly found tuning values. Click OK
once again to exit the Drive Setup window and proceed to the next chapter to download the setup to the drive.

Remark: the drive will not move the motor unless a valid setup is downloaded to the drive.

11.7 Downloading setup data to drive/motor

Closing the Drive setup dialogue with OK, keeps the new settings only in the EasySetup project. In order to store the

Diownload to

new settings into the drive you need to press the Download to Drive/Motor button [EriveMstor] | This downloads the entire
setup data in the drive EEPROM memory. The new settings become effective after the next power-on, when the setup
data is copied into the active RAM memory used at runtime.

1.1.8 Saving setup data in a file

Save

It is also possible to Save the setup data on your PC and use it later.
To summarize, you can define or change the setup data in the following ways:

- create a new setup data by going through the motor and drive dialogues
- use setup data previously saved in the PC
- upload setup data from a drive/motor EEPROM memory

1.1.9 Creating a .sw file with the setup data

Once you have validated your setup, you can create with the menu command Setup | Create EEPROM Programmer
File a software file (with extension .sw) which contains all the setup data to write in the EEPROM of your drive.

A software file is a text file that can be read with any text editor. It contains blocks of data separated by an empty line.
Each block of data starts with the block start address, followed by the block data values ordered in ascending order at
consecutive addresses: first data value — what to write in drive EEPROM memory at block start address, second data —
what to write at block start address + 1, third data — what to write at block start address +2 etc. All data are hexadecimal
16- bit values (maximum 4 hexadecimal digits). Each line contains a single data value. When less than 4 hexadecimal
digits are shown, the value must be right justified. For example, 92 is 0x0092.

The .sw file can be programmed into a drive:
. from a CANopen master, using the communication objects for writing data into the drive EEPROM (see
Chapter 0 for detailed example)

. using the EEPROM Programmer tool, which comes with EasySetup but may also be installed separately. The
EEPROM Programmer was specifically designed for repetitive fast and easy programming of .sw files into the
Technosoft drives during production

© Technosoft 2019 17 iPOS CANopen Programming

1.1.10 Checking and updating setup data via .sw files with a CANopen master

You can program a CANopen master to automatically check after power on if all the Technosoft drives connected to the
CAN network have the wright setup data stored in their EEPROM. The comparison shall be done with the reference .sw
files of each axis. These need to be loaded into the CANopen master. The fastest way to compare a .sw file with the
drive EEPROM contents is by comparing the checksums computed on the .sw file data with those computed by the
drive on the same address range. In case of mismatch, the reference .sw file has to be reloaded into the drive by the
CANopen master. Paragraphs 18.4 and 18.5 present examples on how to program a .sw file in a drive and how to check
its consistency versus a .sw reference file.

1.1.11 Testing and monitoring the drive behavior

You can use the Data Logger or the Control Panel evaluation tools to quickly measure and analyze your application
behavior. In case of errors like protections triggered, check the Drive Status control panel to find the cause.

1.1.12 TechnoCAN Extension

In order to take full advantage of the powerful Technosoft Motion Language (TML) built into the intelligent drives,
Technosoft has developed an extension to CANopen, called TechnoCAN through which TML commands can be
exchanged with the drives. Thanks to TechnoCAN, you can inspect or reprogram any of the Technosoft drives from a
CANopen network using EasySetup or EasyMotion Studio and an RS-232 link between your PC and any of the drives.

TechnoCAN uses only message identifiers outside of the range used by the CANopen predefined connection set (as
defined by CiA DS301 v4.2.0). Thus, TechnoCAN protocol and CANopen protocol can co-exist and communicate
simultaneously on the same physical CAN bus, without disturbing each other.

1.2 Changing the drive Axis ID (Node ID)

The axis ID of an iPOS drive can be set in 3 ways:
= Hardware (H/W) — depending on the drive type, it can be via H/W pins or switches.
= Software (via Setup)— any value between 1 and 255, stored in the setup table.
= Software (via CANopen master) — using CiA-305" protocol

Remark:

e If the drive is in CANopen mode, a Node ID value above 127 is automatically converted into 255 and the drive
is set with CAN communication “non-configured” mode waiting for a CANopen master to configure it using CiA-
305 protocol. A “non-configured” drive answers only to CiA-305 commands. All other CANopen commands are
ignored and transmission of all other CANopen messages (including boot-up) is disabled. The Ready (green)
LED will flash at 1 second time intervals while in this mode.

= In absence of a CANopen master, you can get a drive out from “non-configured” mode, by setting another axis
ID between 1 and 127, either by Hardware or by Software (via Setup).

Drive Setup

Guideline assistant Control made Extemal reference
Ok
Next = Position C No Yes %

Step 1. Inthe <<Control mode>> group box, select whatdo » " Speed & Analogue [Incremental Encoder

you want to control: position, speed or tarque. I the © Torue [~ Automaticaly activated after Power On Help
<<Commutation method>> group box, choose sinusoidal o E o = thod
ommutation metho

rapezaidal mode. The tapezoidal mode is passible orly f your
motor is ecuipped vith digital Hal sensors dvehced " Trapezoidal & Sinusoidal Motor

fiis | selection _

¥ Set/change axis ID |HAY hd Setup
1

Drive Info

CaMbus Protectians

¥ Baudrate FAW default = CaMopen settings.. W Over curent
Motor curent

3
W!ihmmg
0495 [t liarmz

Diive operation parameters % Contol
v Control enor
- Detect
Power supply [24 v ﬁ Pasition enor

Fureant it 14 & - =

Figure 1.2.1. EasySetup — Setting the Axis ID

The axis ID is initialized at power on, using the following algorithm:

a) |If a valid setup table exists, and this setup table was created with the Axis ID Selection checkbox checked in
the Drive Setup dialogue (see above) — with the value read from the setup table. This value can be an axis
number 1 to 255 or can indicate that axis ID will be set according with the AxisID inputs levels. If the drive is
set in CANopen mode and the Axis ID is over 127 it is converted into 255 and the drive enters in CAN
communication “non-configured” mode. The Ready (green) LED will flash at 1 second time intervals while in
this mode.

b) If a valid the setup table exists, and this was created with the Axis ID Selection checkbox unchecked in the
Drive Setup dialogue (see above) — with the last value set either from a valid setup table or by a CANopen
master via CiA-305 protocol. This value can be an axis number 1 to 255 for TMLCAN, 1 to 127 for CANopen,
or can indicate that axis ID will be set according with the AxisID inputs levels

" CiA 305 protocol is available only on firmware F514x.

© Technosoft 2019 18 iPOS CANopen Programming

c) If the setup table is invalid, with the last value set either from a valid setup table or by a CANopen master via
CiA-305 protocol. This value can be an axis number 1 to 255 for TMLCAN, 1 to 127 for CANopen, or can
indicate that axis ID will be set according with the AxisID inputs levels

d) If the setup table is invalid, there is no previous axis ID set from a valid setup table or by a CANopen master,
according with the AxislID inputs levels

Remark: If the current drive axis ID is not known, it can be found in the following way:

a) Connect the drive via a serial RS232 link to a PC where EasySetup or EasyMotion Studio are installed

b) With the drive powered, open EasySetup or EasyMotion Studio and check the status bar. If communication
with the drive is established, the status bar displays Online in green and nearby the drive’s Axis ID. If the status
bar displays Offline in red, execute menu command “Communication|Setup...” and in the dialogue opened
select at “Channel Type” RS232 and at “Axis ID of drive/motor connected to PC” the option Autodetected.
After closing the dialogue with OK, communication with the drive shall be established and the status bar shall
display the drive’s Axis ID

c) Ifthe access to the drive with the unknown Axis ID is difficult, but this drive is connected via CANbus with other
Technosoft drives having an easier access, connect your PC serially to one of the other drives. Use EasySetup
or EasyMotion Studio menu command Communication | Scan Network to find the axis IDs of all the
Technosoft drives present in the network.

1.3 Setting the current limit

In Easy Setup if a feedback device is used, the user can choose a current limit. It is advised to use a lower value than
the one set in current protection.

Drive Setup @
Guidefing assistant Contral mode Extemal reference
Next @ Pogiion " Mo * Yes Setup
Step 1. In the <<Control mode>> group box. select what do - " Speed @ Analogus © Incremental Encoder m
vou want to contial: position, speed or torque. Inthe 1 I~ Automatically activated after Power On Help
<< Commutation method:> group bow, choose sinuscidal or Eligk= -
lizpezoidal mode. The trapezaidal mode is possible only if your pr— Commutation method
motar is equipped with digital Hall sensors vance " Trapezoidal % Sinusoidal Motor
Aais 1D selection h
Drive Info [Set/change awis ID |HAW - setup
CANbus Protections
[V Baud rate FAw default = CAMopen sattings... [V Over cunent
Malor current >[10E n = than (007 s =
e = e P e
v Contral emar
Power supply [24 M =] ﬂ Postionenor > [04395 it + | for more than [z [+ ~|
Cunent limit |4 A - 4— I
——————— A [1 B = 1

Figure 1.3.1. EasySetup — Setting the current limit

The current limit can also be set using Object 207Fh: Current limit.

1.4 Setting the CAN baud rate

The iPOS drives accept the following CAN baud rates: 125Kbps, 250 Kbps, 500kbps and 1Mbps. Using the Drive Setup
dialogue you can choose the initial CAN rate after power on. This information is stored in the setup table The CAN rate
is initialized using the following algorithm:

a) If a valid setup table exists, and this setup table was created with the Set baud rate checkbox checked in the
Drive Setup dialogue (see above) — with the value read from the setup table. This value can be one of the
above 4 values or the firmware default (F/W default) which is 500kbs

b) If a valid setup table exists, and this setup table was created with the Set baud rate checkbox unchecked in
the Drive Setup dialogue (see above) — with the last value set either from a valid setup table or by a CANopen
master via CiA-305 protocol

c) If the setup table is invalid, with the last value set either from a valid setup table or by a CANopen master via

CiA-305 protocol.
d) If the setup table is invalid, there is no previous CAN rate set from a valid setup table or by a CANopen master,

with f/w default value which is 500kbs

© Technosoft 2019 19 iPOS CANopen Programming

Drive Setup @
Guideling assistant Cortral mode Entemnal reference
Ok
MNext * Pogiion " Nao = Yes Setup |:
£ Speed & analogue © Incremental Encoder Cancel
Step 1. Inthe <<Control modes > group box, select what do - pee &
you want to control: position, speed of torque. In the I Automatically activated after Power On
<< Commutation method> > group bow, chaose sinusoidal or © Torque _ ﬂ
\rapezoidal mode. The trapezoidal made is possible only if your = Commutation method
motor is equipped with digital Hall sensors vance € Trapezoidal @ Ginusoidal Motor
A 1D selection _
- Drive Info ¥ Set/ change axis D |HAW hd Setup
CaMbus Protections
[V Baudrate F/d default = CANopen settings... ¥ Dwer cunent
——— T Motor curent >[10.6 [=] o more than 001 [=l
Drive operation pa 125 Kby
P 1o 2] 250 Ko Dteat o oty
OWer sUppY 500 th: Paosition emar > ‘U 4335 |IOl j for more than |3 ‘S j
Current limit (4|1 Wbps I
[>1n iren I B [« 1

Figure 1.4.1. EasySetup — Setting the CAN baud rate

1.5 CANopen factor group setting

The CANopen Settings button opens an interface that allows access to the scaling factors for position, speed,
acceleration and time objects. These settings are linked directly to the objects 6089, 608An, 608Bn, 608Chr, 608D,
608En, 206Fh,2070n, 6093h, 60941, 6097n and 207 1n. This means that these settings can be chosen either from Setup
or by later setting the objects themselves. The factor group dialogue can select the units to be used when writing or
reading the Position, Velocity or Acceleration objects. These settings already have a list standard units defined in the
CANopen standard CiA402 and there is the option of customization.

Drive Setup
Guidsling agsistant
Mext
Step 1. Inthe <<Confrol mode>> group box, select whatdo » Speed factors = @
|you warnt to contra position, speed o torque. In the
<<Commutation method>» group box, choose sinusoidal or ; 1 Factor numeratar
rapezoidal mode. The tapezoidal mods is possible only if your . 1P = ———————
mator is equipped with digital Hall sensors, L Lsjpa = L S @ Factor divisar
Pasition urits: | deg - Details. Dimengion index
T Spead units: [IL1 - Details Nokatior index |73
W Baudiate [Frw defaut | I CARopen seffings | Acceleration urits: Detais... Factor rumerator |65535. 33958
Ips
Drive operation parameters Time urits: JSEI'dEhnEd Details. ‘ Factor divisor 1968080
Power supply |24 A - Detect
Current limit [4 A - k. Cancel | Help ‘ Ok I Cancel | Help ‘

In the last case, the user can set the factor numerator and divisor in order to obtain the needed scaling. The dimension
and notation index (and their linked objects) have no influence over any scaling. Their purpose is only to define an [SI]
unit name like rpm, rad, deg, etc. The factor group settings are stored in the setup table. By default, the drive uses its
internal units. The correspondence between the drive internal units and the [SI] units is presented in the drives user

manual.
For the [SI] dimension and notation index list, see Dimension/Notation Index Table.
Remarks:

e the dimension and notation index objects (6089n, 608An, 608Bh, 608Ch, 608Dn, 608Eh, 206Fh and 2070n) have
been classified as obsolete by the CiA 402 standard. They are now used only for legacy purposes, on CANopen
masters which still need them.

e because the iPOS drives work with Fixed 32 bit numbers (not floating point), some calculation round off errors
might occur when using objects 6093h, 6094h, 6097h and 2071+. If the CANopen master supports handling the
scaling calculations on its side, it is recommended to use them instead of using the “Factor” scaling objects.

1.6 Using the built-in Motion Controller and TML

One of the key advantages of the Technosoft drives is their capability to execute complex motions without requiring an

external motion controller. This is possible because Technosoft drives offer in a single compact package both a state of
art digital drive and a powerful motion controller.

1.6.1 Technosoft Motion Language Overview

Programming motion directly on a Technosoft drive requires to create and download a TML (Technosoft Motion
Language) program into the drive memory. The TML allows you to:

e Set various motion modes (profiles, PVT, PT, electronic gearing or camming, etc.)
e Change the motion modes and/or the motion parameters
e Execute homing sequences
e Control the program flow through:
= Conditional jumps and calls of TML functions

= Interrupts generated on pre-defined or programmable conditions (protections triggered, transitions of limit
switch or capture inputs, etc.)

© Technosoft 2019 20 iPOS CANopen Programming

= Waits for programmed events to occur
e Handle digital I/O and analogue input signals
o Execute arithmetic and logic operations
e Perform data transfers between axes
e Control motion of an axis from another one via motion commands sent between axes

e Send commands to a group of axes (multicast). This includes the possibility to start simultaneously motion
sequences on all the axes from the group

e Synchronize all the axes from a network
In order to program a motion using TML you need EasyMotion Studio software platform.

Chapter 19 describes in detail how the TML features can be combined with the CANopen programming.

2 Layer Setting Services (LSS protocol)'

By using layer setting services, the CANopen node-ID and/or the bit timing settings of a LSS slave device may be
configured via the CAN network without using any hardware components such as jumpers or DIP-switches. The
CANopen device that can configure other devices via CANopen network is called a LSS Master. There must be only
one (active) LSS master in a network. The CANopen device that will be configured by the LSS Master via CANopen
network is called a LSS Slave.

An LSS Slave can be identified by its unique LSS address. The LSS address consists of the sub objects Vendor ID,
Product Code, Revision Number and Serial Number of the CANopen “Identity Object” with index 1018h. In the
network, there must not be other LSS Slaves possessing the same LSS address.

With this unique LSS address an individual CANopen device can be allocated within the network. The Node ID is valid
if it is in the range of 0x01...0x7F. The value OxFF indicates not configured CANopen devices.

Communication between LSS Master and LSS Slaves is accomplished by LSS protocols, which use only two COB-IDs:
* LSS master messages from LSS Master to LSS Slaves (COB-ID 0x7E5)
* LSS slave messages from the LSS Slaves to LSS Master (COB-ID 0x7E4).

2.1 Overview

The table below provides an overview on the LSS commands, including details on whether they may be used in states
“Waiting” and “Configuration”. To change the LSS state, the LSS services Switch State Global or Switch State
Selective may be used.

Table 2.1.1 - Drive State Transitions

Command LSS LSS
Specifier Services waiting configuration
(cs) state state

0x04 Switch State Global yes yes
0x40 Vendor ID yes no
0x41 Switch state selective Product Code yes no
0x42 procedure Revision Number yes no
0x43 Serial Number yes no
0x11 Configure node-ID no yes
0x13 Configure bit timing parameters no yes
0x15 Activate bit timing parameters no yes
0x17 Store configuration no yes
0x5A Identity Vendor 1D no yes
0x5B Inquire LSS address Identity Product Code no yes
0x5C protocol Identity Revision Number no yes
0x5D Identity Serial Number no yes
Ox5E Inquire node-ID protocol no yes
0x46 Vendor ID yes yes
0x47 Product Code yes yes
0x48 Identify remote slave Revision Number Low yes yes
0x49 procedure Revision Number High yes yes
Ox4A Serial Number Low yes yes
0x4B Serial Number High yes yes
0x4C Identify non-configured Remote Slave yes yes

" LSS protocol is available only in the F514x firmware

© Technosoft 2019 21 iPOS CANopen Programming

2.2 Configuration services

The LSS configuration services are used to configure the node-ID or bit rate.

2.21 Switch State Global

Switches all LSS slave devices in the network into LSS “Waiting” state or LSS “Configuration” state.

The service is unconfirmed.

cs 0x04 Command Specifier for Switch State Global command
mode 0 Switch to LSS state waiting
1 Switch to LSS state configuration
LSS master LSS slave
CAN-ID = 0x7E5
— 0;’8 4 | mode reserved —
0 1 2 3 4 5 6 7

Figure 2.2.1. LSS — Switch State Global

2.2.2 Switch State Selective

Changed state of one LSS Slave from “Waiting” to “Configuration”.

LSS command specifier can be:

- 0x40 to submit the Vendor ID,

- 0x41 to submit the Product Code,

- 0x42 to submit the Revision Number,
- 0x43 to submit the Serial Number

To selectively switch a target LSS slave to “Configuration” state, all the Switch State Selective commands must be sent
and must contain the same data as found in the “Identity Object”, index 1018, of the target drive.

The service is confirmed. The LSS slave sends the command specifier 0x44 meaning it has entered “Configuration”
state.

LSS master LSS slave
CAN-ID = Ox7E5
cs
— | g0 Vendor ID reserved —>
0 1 2 3 4 5 6 7
CAN-ID = Ox7E5
— 0:(:481 1 Product Code reserved —
0 1 2 3 4 5 6 7
CAN-ID = Ox7E5
—p 0;22 Revision Number reserved —>
0 1 2 3 4 5 6 7
CAN-ID = Ox7E5
cs -
—> | o3 Serial Number reserved —>
0 1 2 3 4 5 6 7
CAN-ID = Ox7E4
< 0;24 reserved <+
0 1 2 3 4 5 6 7

Figure 2.2.2. L SS — Switch State Selective

2.2.3 Configure Node ID
Configures the Node ID (of value 1...127 or 255).

The LSS Master can set the LSS Slave’s Node ID only in LSS configuration state. The LSS Master is responsible to
switch a single LSS Slave into LSS state “Configuration” (with Switch State Selective) before requesting this service.
With this service, the LSS Salve’s Node ID can take only values between 1 and 127 (valid Node ID) or 255 (set slave
to not-configured).

If the Node ID is set to 255 (OxFF), the LSS slave remains in NMT Initialization sub-state “reset communication” and
waits in LSS waiting state for further commands. During this waiting state, the LSS slave is not allowed to send
messages, except when LSS replies are needed.

© Technosoft 2019 22 iPOS CANopen Programming

To activate the new node ID, the LSS master has to send the NMT command “Reset communication”. To store the new
node ID in the non-volatile memory, the LSS master has to use LSS Store Configuration protocol before resetting the
communication or the node.

cs 0x11 Command specifier for configure node-ID protocol
0 Protocol successfully completed
mode
1 Node ID out of range value
specific error always 0
LSS master LSS slave
CAN-ID = Ox7E5
—p 05?1 n?ge- reserved —>
0 1 2 3 4 5 6 7
CAN-ID = Ox7E4
cs error |specifid]
< 0x11 | code | error reserved <
0 1 2 3 4 5 6 7

Figure 2.2.3. LSS — Configure Node ID

2.2.4 Configure Bit Timing Parameters

By means of the service configure bit timing parameters, the LSS Master can configure new bit timing on a single or
multiple LSS Slaves. The new bit timing will be active only after LSS Activate Bit Timing Parameters command or LSS

Store Configuration Protocol followed by node reset commands.

cs 0x13 Command specifier for configure bit timing parameters protocol
table selector always 0
table index CAN bit rate codes
0 Protocol successfully completed
error code
1 Node ID out of range value
specific error always 0
LSS master LSS slavt
CAN-ID = 0X7E5
— | 0x153 beleciof ndex reserved —>
0 1 2 3 4 5 6 7
CAN-ID = 0x7E4
— o] e o] resorved —
0 1 2 3 4 5 6 7

Figure 2.2.4. LSS — Configure Bit Timing Parameters
Table 2.2.1 — Supported CAN bitrates

Value Bit Rate
0 1 Mbit/s
2 500 Kbit/s
3 250 Kbit/s
4 125 Kbit/s
2.2.5 Activate Bit Timing Parameters

Activates bit timing parameters selected with Configure Bit Timing Parameters service.

Switch delay = specifies the duration [in ms] of the two delay periods of equal length. The first period is until the bit
timing parameters switch is done. The second period is the time before sending any new CAN
message. They are necessary to avoid operating the network with different bit rates.

After receiving an activate bit timing command, the LSS slave stops communication. After the first switch delay,
communication is switched to the new bit rate. After the second delay, the LSS slave is allowed to transmit messages
with the new bit rate active.

LSS master LSS slave
CAN-ID = 0x7E5
—> 02?3 switch delay reserved —>
0 1 2 3 4 5 6 7

Figure 2.2.5. LSS — Activate Bit Timing Parameters

© Technosoft 2019 23 iPOS CANopen Programming

LSS master

LSS slave 1 old bit rate p1| switch delay 1 switch delay 2
LSS slave 2 old bit rate p2 | switch delay 1 switch delay 2
act : Activate bit timing parameters command

act

switch delay 1

switch delay 2 new bit rate

p1,p2: Individual processing delay

Figure 2.2.6. LSS — LSS master and LSS slave timings

2.2.6 Store Configuration Protocol

The pending node-ID and bit rate are copied to the persistent node-ID and bit rate in the non-volatile memory. The
result is confirmed by the LSS slave with success or failure message.

cs 0x17 Store Configuration
error code always 0
specific error always 0
LSS master LSS slave
CAN-ID = Ox7E5
—_p 0;:?7 reserved —
0 1 2 3 4 5 6 7
CAN-ID = Ox7E4
cs error |specifid]
< 0x17 | code | error reserved <
0 1 2 3 4 5 6 7

227 Inquire Identity Vendor ID

Figure 2.2.7. LSS — Store Configuration

Reads Vendor ID of LSS slave. The same value can be found in Identity Object, index 1018h, Sub-index 01 of target

slave.
LSS ma

ster

—>

CAN-ID = Ox7E5

cs
OXBA reserved
0 1 2 3 4 5 6 7
CAN-ID = Ox7E4
O)ng vendor ID reserved
0 1 2 3 4 5 6 7

LSS slave

—>

Figure 2.2.8. LSS — Inquire Identity Vendor ID

2.2.8 Inquire Identity Product Code

Reads Product Code of LSS slave. The same value can be found in Identity Object, index 1018h, Sub-index 02 of target

slave.
LSS ma

ster

—>

<4—

CAN-ID = Ox7E5
cs
0x5B reserved
0 1 2 3 4 5 6 7
CAN-ID = Ox7E4
O;;B product code reserved
0 1 2 3 4 5 6 7

LSS slave

—>

<4

Figure 2.2.9. LSS — Inquire Identity Product Code

© Technosoft 2019

24

iPOS CANopen Programming

229 Inquire Identity Revision Number

Reads Revision Number of LSS slave. The same value can be found in Identity Object, index 1018, Sub-index 03 of
target slave.

LSS master LSS slave
CAN-ID = Ox7E5
—_p ofgc reserved —
0 1 2 3 4 5 6 7
CAN-ID = Ox7E4
<4 OfgC revision number reserved <4
0 1 2 3 4 5 6 7

Figure 2.2.10. LSS - Inquire Identity Revision Number

2.2.10 Inquire Identity Serial Number

Reads Serial Number of LSS slave. The same value can be found in Identity Object, index 1018s, Sub-index 04 of target

slave.

LSS master LSS slave
CAN-ID = 0x7E5
—_ Ong reserved —p
0 1 2 3 4 5 6 7
CAN-ID = Ox7E4
<+ Ong serial number reserved <+
0 1 2 3 4 5 6 7

Figure 2.2.11. LSS - Inquire Identity Serial Number

2.2.11 Inquire Identity Node ID
Reads active Node ID of LSS slave.
LSS master LSS slave
CAN-ID = 0x7E5
—p O)C:ESSE reserved —p
0 1 2 3 4 5 6 7
CAN-ID = 0x7E4
<4— O)ng ncl)ge— reserved <4
0 1 2 3 4 5 6 7

Figure 2.2.12. LSS — Inquire Identity Node ID

2.2.12 Identify Remote Slave

Identifies LSS Salves in the CAN network. The LSS master sends identify remote slave commands containing a single
Vendor ID, a single Product Code, and a range of Revision Numbers and Serial Numbers. All LSS Slaves that are within
these values (including the boundaries) answer with an Identify Remote Slave response (cs=0x4F). An LSS Slave
answers, only after all Identify commands are sent and it is within the correct parameters.

With this protocol, a network search can be implemented on the LSS master. With this method, the LSS address range
is set to maximum values, and identifies the number of remote slaves in the network. This range will be split in two sub-
areas and identify the slaves again. This process will be repeated until all LSS Slaves have been identified.

© Technosoft 2019 25 iPOS CANopen Programming

LSS master LSS slave

CAN-ID = Ox7E5
—> | o0va6 Vendor ID reserved | —
0 1 2 3 4 5 6 7
CAN-ID = 0x7E5
— | 0§§17| Product Code reserved | —>
0 1 2 3 4 5 6 7
CAN-ID = 0x7E5
—> | 0;318 | Revision Number low reserved | —
0 1 2 3 4 5 6 7
CAN-ID = 0x7E5
—> | 049 | Revision Number high reserved | —>
0 1 2 3 4 5 5 7
CAN-ID = Ox7E5
—> | 0)((:2A | Serial Number low reserved | —
0 1 2 3 4 5 6 7
CAN-ID = Ox7E5
—> | OE:B Serial Number high reserved | —p
0 1 2 3 4 5 6 7
CAN-ID = 0x7E4
<+ | 0;2,: reserved | <«
0 1 2 3 4 5 5 7

Figure 2.2.13. LSS - Identify Remote Slave

2.2.13 Identify non-configured Remote Slave

Allows the LSS master to detect non-configured slave devices in the network. All LSS Slaves without a configured Node
ID (OxFF) will answer with a 0x50 command specifier response.

LSS master LSS slave
CAN-ID = Ox7E5

—p 0::0 reserved —p

0 1 2 3 4 5 6 7
CAN-ID = 0x7E4

cs
< 0x50 reserved <+
0 1 2 3 4 5 6 7

Figure 2.2.14. LSS — Identify non-configured Remote Slave

© Technosoft 2019 26 iPOS CANopen Programming

3 CAN and the CANopen protocol

CAN (Controller Area Network) is a serial bus system used in a broad range of automation control systems. The CAN
specifies the data link and the physical connection over which lays the CANopen, a high level protocol specifying how
various types of devices can use the CAN network.

3.1 CAN Architecture

CAN provides distributed control of the motion application, the control loops are closed locally not on the master
controller. The master controller coordinates multiple devices through the commands it sends and receives information
about the status of the devices.

CANopen Master
Motion ﬂgz;@’s
abelcatiol generation
CAN bus l
Technosoft drive Technosoft drive
" . CANopen
> § [Position/| > § [Position/| device
S % | Speed S % | Speed
$ 5 | Control 8 5 | Control
© < © S
= o | Torque = o | Torque
Fo Control Fo Control

Technosoft extended the concept of distributed motion application allowing splitting the motion application between the
Technosoft drives and the CANopen master. Using TML the user can build complex motion applications locally, on each
drive, leaving on the CANopen master only a high level motion application and thus reducing the CAN master
complexity. The master has the vision of the motion application, specific tasks being executed on the Technosoft drives.

CANopen Master

High level High level
motion trajectory

application | | generation

CAN bus l
Technosoft drive Technosoft drive A
Motion Motion de\zf‘.’:n
application application
c |Position/ c |Position/
E‘% Speed E‘% Speed
@ 5 | Control @ 5 | Control
TE T
< o | Torque < o | Torque
7 O | control F O | control

3.2 Accessing CANopen devices

A CANopen device is controlled through read/write operations to/from objects performed by a CANopen master (PC or
PLC).

3.21 Object dictionary

The Object Dictionary is a group of objects that describes the complete functionality of a device by way of communication
objects and it is the link between the communication interface and the application. All communication objects of a device
(application data and configuration parameters) are described in the Object Dictionary in a standardized way.

3.2.2 Object access using index and sub-index

The objects defined for a device are accessed using a 16-bit index and an 8-bit sub-index. In case of arrays and records
there is an additional sub-index for each element of the array or record.

© Technosoft 2019 27 iPOS CANopen Programming

3.2.3 Service Data Objects (SDO)

Service Data Objects are used by CANopen master to access any object from the drive’s Object Dictionary. Both
expedited and segmented SDO transfers are supported (see DS301 v4.2.0 for details). The SDOs are typically used for
drive configuration after power-on, for PDO mapping and for infrequent low priority communication.

SDO transfers are confirmed services. In case of an error, an Abort SDO message is transmitted with one of the codes
listed in Table 3.2.1.

Table 3.2.1 — SDO Abort Codes

Abort code Description

0503 0000n Toggle bit not alternated

0504 0001 Client/server command specifier not valid or unknown

0601 0000n Unsupported access to an object

0602 0000n Object does not exist in the object dictionary

0604 0041n Object cannot be mapped to the PDO

0604 0042 The number and length of the objects to be mapped would exceed PDO length
0604 0043n General parameter incompatibility reason

0604 0047h General internal incompatibility error in the device

0607 0010n Data type does not match, length of service parameter does not match

0607 0012n Data type does not match, length of service parameter too high

0607 0013n Data type does not match, length of service parameter too low

0609 0011 Sub-index does not exist

0609 0030n Value range of parameter exceeded (only for write access)

0609 0031 Value of parameter written too high

0609 0032 Value of parameter written too low

0800 0000n General error

0800 0020n Data cannot be transferred or stored to the application

0800 0021n Data cannot be transferred or stored to the application because of local control
0800 0022n Data cannot be transferred or stored to the application because of the present device state

3.24 Process Data Objects (PDO)

Process Data Objects are used for high priority, real-time data transfers between CANopen master and the drives. The
PDOs are unconfirmed services and are performed with no protocol overhead. Transmit PDOs are used to send data
from the drive, and receive PDOs are used to receive data. The Technosoft drives have 4 transmit PDOs and 4 receive
PDOs. The contents of the PDOs can be set according with the application needs through the dynamic PDO-mapping.
This operation can be done during the drive configuration phase using SDOs.

Two objects define a PDO: the communication object and the mapping object. The communication object defines the
COB-ID of the PDO, the transmission type and the event triggering the transmission. The mapping object contains the
descriptions of the objects mapped into the PDO, i.e. the index, sub-index and size of the mapped objects.

© Technosoft 2019 28 iPOS CANopen Programming

3.3 Objects that define SDOs and PDOs

3.31 Object 1200n: Server SDO Parameter

The object contains the COB-IDs of the messages used for the SDO protocol. The COBID of the SDO packages
received by the drive, stored in sub-index 01, is computed as 600n + drive Node ID. The COB ID of the SDO packages

sent by the drive, stored in sub-index 02, is computed as 580 + drive Node ID.

Object description:
Index 1200n
Name Server SDO Parameter
Object code RECORD
Data type SDO Parameter
Entry description:
Sub-index 00n
Description Number of entries
Access RO
PDO mapping No
Value range 2
Default value 2
Sub-index 01n
Description SDO receive COB-ID
Access RO
PDO mapping No
Value range UNSIGNED32
Default value 600n + Node-ID
Sub-index 02n
Description SDO transmit COB-ID
Access RO
PDO mapping No
Value range UNSIGNED32
Default value 580n + Node-ID

3.3.2

Object 1400n: Receive PDO1 Communication Parameters

The object contains the communication parameters of the receive PDO1. Sub-index 1n contains the COB ID of the PDO.

The transmission type (sub-index 2n) defines the reception character of the PDO.

Object description:
Index 1400n
Name RPDO1 Communication Parameter
Object code RECORD
Data type SDO Parameter
Entry description:
Sub-index 00n
Description Number of entries
Access RO
PDO mapping No
Value range -
Default value 2
Sub-index 01n
Description COB-ID RPDO1
Access RW
PDO mapping No
Value range UNSIGNED32
Default value 200n + Node-ID
Sub-index 02n
Description Transmission type
Access RW
PDO mapping No
Value range UNSIGNEDS8
Default value 255

© Technosoft 2019

29

iPOS CANopen Programming

Table 3.3.1 — PDO COB-ID entry description

Bit Value Meaning
31 0 PDO exists / is valid / is enabled

1 PDO does not exist / is not valid / is disabled
30 0 RTR allowed on this PDO

1 No RTR allowed on this PDO

0 11 bit ID
29 1 29 bit ID
28...11 0 AU AD :

X If bit 29=1: Bit 11...28 of 29-bit PDO COB-ID
10...0 X Bit 0...10 of PDO COB-ID

It is not allowed to change bits 0-29 while the PDO exists (bit 31=0).

3.3.3

Object 1401h: Receive PDO2 Communication parameters

The object contains the communication parameters of the receive PDO2. Sub-index 1n contains the COB ID of the PDO.
The transmission type (sub-index 2n) defines the reception character of the PDO. The receive PDO2 COB-ID entry

description is identical with the one of the receive PDO1 (see Table 3.3.1).

Object description:

Entry description:

3.34

Index 1401n

Name RPDO2 Communication Parameter
Object code RECORD

Data type SDO Parameter
Sub-index 00n

Description Number of entries
Access RO

PDO mapping No

Value range -

Default value 2

Sub-index 01n

Description COB-ID RPDO2
Access RW

PDO mapping No

Value range UNSIGNED32

Default value

300n + Node-ID

Sub-index 02n

Description Transmission type
Access RW

PDO mapping No

Value range UNSIGNEDS
Default value 255

Object 1402h: Receive PDO3 Communication parameters

The object contains the communication parameters of the receive PDO3. Sub-index 1n contains the COB ID of the PDO.
The transmission type (sub-index 2n) defines the reception character of the PDO. The receive PDO3 COB-ID entry

description is identical with the one of the receive PDO1 (see Table 3.3.1).

Object description:

Entry description:

Index 1402n

Name RPDO3 Communication Parameter
Object code RECORD

Data type SDO Parameter

Sub-index 00n

Description Number of entries

Access RO

PDO mapping No

Value range -

Default value 2

© Technosoft 2019

30

iPOS CANopen Programming

Sub-index 01n

Description COB-ID RPDO3
Access RW

PDO mapping No

Value range UNSIGNED32

Default value

400n + Node-ID

Sub-index 02n

Description Transmission type
Access RW

PDO mapping No

Value range UNSIGNEDS8
Default value 255

3.3.5 Object 1403nh: Receive PDO4 Communication parameters

The object contains the communication parameters of the receive PDO4. Sub-index 1n contains the COB ID of the PDO.
The transmission type (sub-index 2n) defines the reception character of the PDO. The receive PDO4 COB-ID entry

description is identical with the one of the receive PDO1 (see Table 3.3.1).

Object description:
Index 1403n
Name RPDO4 Communication Parameter
Object code RECORD
Data type SDO Parameter
Entry description:
Sub-index 00n
Description Number of entries
Access RO
PDO mapping No
Value range -
Default value 2
Sub-index 01n
Description COB-ID RPDO2
Access RW
PDO mapping No
Value range UNSIGNED32
Default value 500n + Node-ID
Sub-index 02n
Description Transmission type
Access RW
PDO mapping No
Value range UNSIGNEDS
Default value 255

3.3.6 Object 1600n: Receive PDO1 Mapping Parameters

This object contains the mapping parameters of the receive PDO1. The sub-index 00n contains the number of valid
entries within the mapping record. This number of entries is also the number of the objects that shall be
transmitted/received with the corresponding PDO. The sub-indices from 01n to the number of entries contain the
information about the mapped objects. These entries describe the PDO contents by their index, sub-index and length.
The length entry contains the length of the mapped object in bits and is used to verify the overall mapping length.

The structure of the entries from sub-index 01n to the number of entries is as follows:

MSB LSB
Index (16 bits) Sub-index (8 bits) Object length (8 bits)

In order to change the PDO mapping, first the PDO has to be disabled - the object 160xn sub-index 00 has to be set to
0. Now the objects can be remapped. If a wrong mapping parameter is introduced (object does not exist, the object

© Technosoft 2019 31 iPOS CANopen Programming

cannot be mapped or wrong mapping length is detected) the SDO transfer will be aborted with an appropriate error
code (0602 0000n or 0604 0041n). After all objects are mapped, sub-index 00n has to be set to the valid number of
mapped objects thus enabling the PDO.

If data types (index 01n - 07n) are mapped, they serve as “dummy entries”. The corresponding data is not evaluated by
the drive. This feature can be used to transmit data to several drives using only one PDO, each drive using only a part
of the PDO. This feature is only valid for receive PDOs.

Object description:
Index 1600n
Name RPDO1 Mapping Parameters
Object code RECORD
Data type PDO Mapping
Entry description:
Sub-index 00n
Description Number of mapped objects
Access RW
PDO mapping No
Value range 0: Mapping disabled
1 —64: Sub-index 1 to x is valid
Default value 1
Sub-index 01n
Description 15t mapped object
Access RW
PDO mapping No
Value range UNSIGNED32
Default value 60400010n — Controlword
3.3.7 Object 1601n: Receive PDO2 Mapping Parameters

This object contains the mapping parameters of the receive PDO2. The sub-index 00n contains the number of valid
entries within the mapping record. This number of entries is also the number of the objects that shall be
transmitted/received with the corresponding PDO.

Object description:

Index 1601n
Name RPDO2 Mapping Parameter
Object code RECORD
Data type PDO Mapping
Entry description:
Sub-index 00n
Description Number of mapped objects
Access RW
PDO mapping No
Value range 0: Mapping disabled

1 — 64: Sub-index 1 to x is valid

Default value

2

Sub-index 01n

Description 15t mapped object
Access RW

PDO mapping No

Value range UNSIGNED32

Default value

60400010n — Controlword

Sub-index 02n

Description 2"Y mapped object
Access RW

PDO mapping No

Value range UNSIGNED32

Default value

60600008h — modes of operation

© Technosoft 2019

32

iPOS CANopen Programming

3.3.8

This object contains the mapping parameters of the receive PDO3. The sub-index 00n contains the number of valid
entries within the mapping record. This number of entries is also the number of the objects that shall be

Object 1602n: Receive PDO3 Mapping Parameters

transmitted/received with the corresponding PDO.

Object description:
Index 1602n
Name RPDO3 Mapping Parameter
Object code RECORD
Data type PDO Mapping
Entry description:
Sub-index 00n
Description Number of mapped objects
Access RW
PDO mapping No
0: Mapping disabled
Value range 1— 64: Sub-index 1 to x is valid
Default value 2
Sub-index 01n
Description 15t mapped object
Access RW
PDO mapping No
Value range UNSIGNED32
Default value 60400010n — Controlword
Sub-index 02n
Description 2" mapped object
Access RW
PDO mapping No
Value range UNSIGNED32
Default value 607A0020n — target position
3.3.9 Object 1603n: Receive PDO4 Mapping Parameters

This object contains the mapping parameters of the receive PDO4. The sub-index 00n contains the number of valid
entries within the mapping record. This number of entries is also the number of the objects that shall be
transmitted/received with the corresponding PDO.

Object description:
Index 1603hn
Name RPDO4 Mapping Parameters
Object code RECORD
Data type PDO Mapping
Entry description:
Sub-index 00n
Description Number of mapped objects
Access RW
PDO mapping No
Value range 0: Mapping disabled

1 — 64: Sub-index 1 to x is valid

Default value

2

Sub-index 01n

Description 15t mapped object
Access RW

PDO mapping No

Value range UNSIGNED32

Default value

60400010n — Controlword

Sub-index 02n

Description 2"Y mapped object
Access RW

PDO mapping No

Value range UNSIGNED32

Default value

60FF0020n — target velocity

© Technosoft 2019

33

iPOS CANopen Programming

3.3.10 Object 1800n: Transmit PDO1 Communication parameters

This object contains the communication parameters of the transmit PDO1. For detailed description see object 1400n
(Receive PDO1 communication parameters, COB-ID entry description, described in Table 3.3.1). The inhibit time is

defined as multiples of 100 us.

Object description:
Index 1800n
Name TPDO1 Communication Parameters
Object code RECORD
Data type SDO Parameter
Entry description:
Sub-index 00n
Description Number of entries
Access RO
PDO mapping No
Value range -
Default value 5
Sub-index 01n
Description COB-ID TPDO1
Access RW
PDO mapping No
Value range UNSIGNED32

Default value

180n + Node-ID

Sub-index 02n
Description Transmission type
Access RW

PDO mapping No

Value range UNSIGNEDS8
Default value 255
Sub-index 03n
Description Inhibit time
Access RW

PDO mapping No

Value range UNSIGNED16
Default value 300 (30 ms)
Sub-index 04n
Description Reserved
Sub-index 05n
Description Event timer
Access RW

PDO mapping No

Value range UNSIGNED16
Default value 0

3.3.11 Object 1801n: Transmit PDO2 Communication parameters

This object contains the communication parameters of the transmit PDO2. For detailed description see object 1400n
(Receive PDO1 communication parameters, COB-ID entry description, described in Table 3.3.1). The inhibit time is

defined as multiples of 100 us.
Object description:

Index 1801n

Name TPDO2 Communication Parameters

Object code RECORD

Data type SDO Parameter
Entry description:

Sub-index 00n

Description Number of entries

Access RO

PDO mapping No

Value range -

Default value 5

© Technosoft 2019

iPOS CANopen Programming

Sub-index 01n

Description COB-ID TPDO2
Access RW

PDO mapping No

Value range UNSIGNED32

Default value

280n + Node-ID

Sub-index 02n
Description Transmission type
Access RW

PDO mapping No

Value range UNSIGNED8
Default value 255
Sub-index 03h
Description Inhibit time
Access RW

PDO mapping No

Value range UNSIGNED16
Default value 300 (30 ms)
Sub-index 04n
Description Reserved
Sub-index 05n
Description Event timer
Access RW

PDO mapping No

Value range UNSIGNED16
Default value 0

3.3.12 Object 1802n: Transmit PDO3 Communication parameters

This object contains the communication parameters of the transmit PDO3. By default, this TxPDO is disabled by setting
Bit31 to 1v in Sub-index 01n. For detailed description see object 1400n (Receive PDO1 communication parameters,
COB-ID entry description, described in Table 3.3.1). The inhibit time is defined as multiples of 100 us.

Object description:

Entry description:

Index 1802

Name TPDO3 Communication Parameters
Object code RECORD

Data type SDO Parameter
Sub-index 00n

Description Number of entries
Access RO

PDO mapping No

Value range -

Default value 5

Sub-index 01n

Description COB-ID TPDO3
Access RW

PDO mapping No

Value range UNSIGNED32

Default value

80000380n + Node-ID

Sub-index 02n

Description Transmission type
Access RW

PDO mapping No

Value range UNSIGNEDS8
Default value 255

Sub-index 03n

Description Inhibit time
Access RW

© Technosoft 2019

35

iPOS CANopen Programming

PDO mapping No

Value range UNSIGNED16
Default value 300 (30 ms)
Sub-index 04h
Description Reserved
Sub-index 05n
Description Event timer
Access RW

PDO mapping No

Value range UNSIGNED16
Default value 0

3.3.13 Object 1803n: Transmit PDO4 Communication parameters

This object contains the communication parameters of the transmit PDO4. By default, this TxPDO is disabled by setting
Bit31 to 1b in Sub-index 01n. For detailed description see object 1400n (Receive PDO1 communication parameters,
COB-ID entry description, described in Table 3.3.1) . The inhibit time is defined as multiples of 100 ps.

Object description:

Index 1803n

Name TPDO4 Communication Parameter

Object code RECORD

Data type SDO Parameter
Entry description:

Sub-index 00n

Description Number of entries

Access RO

PDO mapping No

Value range =

Default value 5

Sub-index 01n

Description COB-ID TPDO4

Access RW

PDO mapping No

Value range UNSIGNED32

Default value

80000480n + Node-ID

Sub-index 02n
Description Transmission type
Access RW

PDO mapping No

Value range UNSIGNEDS8
Default value 255
Sub-index 03h
Description Inhibit time
Access RW

PDO mapping No

Value range UNSIGNED16
Default value 300 (30 ms)
Sub-index 04n
Description Reserved
Sub-index 05n
Description Event timer
Access RW

PDO mapping No

Value range UNSIGNED16
Default value 0

© Technosoft 2019

36

iPOS CANopen Programming

3.3.14 Object 1A00n: Transmit PDO1 Mapping Parameters

This object contains the mapping parameters of the transmit PDO1. For detailed description see object 1600 (Receive
PDO1 mapping parameters)

Object description:

Entry description:

Index 1A00n

Name TPDO1 Mapping Parameters
Object code RECORD

Data type PDO Mapping

Sub-index 00n

Description Number of mapped objects
Access RW

PDO mapping No

Value range 0: Mapping disabled

1 — 64: Sub-index 1 to x is valid

Default value

1

Sub-index 01n

Description 18t mapped object
Access RW

PDO mapping No

Value range UNSIGNED32

Default value

60410010n — Statusword

3.3.15 Object 1A01h: Transmit PDO2 Mapping Parameters

This object contains the mapping parameters of the transmit PDO2. For detailed description see object 1600 (Receive
PDO1 mapping parameters)

Object description:

Entry description:

Index 1A01n

Name TPDO2 Mapping Parameter
Object code RECORD

Data type PDO Mapping

Sub-index 00n

Description Number of mapped objects
Access RW

PDO mapping No

Value range 0: Mapping disabled

1 — 64: Sub-index 1 to x is valid

Default value

2

Sub-index 01n

Description 15t mapped object
Access RW

PDO mapping No

Value range UNSIGNED32

Default value

60410010 — Statusword

Sub-index 02n

Description 2" mapped object
Access RW

PDO mapping No

Value range UNSIGNED32

Default value

60610008n — modes of operation

display

3.3.16 Object 1A02,h: Transmit PDO3 Mapping Parameters

This object contains the mapping parameters of the transmit PDO3. For detailed description see object 1600n (Receive
PDO1 mapping parameters). By default, this PDO is disabled with object 1802n Sub-index 01 by setting Bit31 to 1.

Object description:

Index 1A02n

Name TPDO3 Mapping Parameter
Object code RECORD

Data type PDO Mapping

© Technosoft 2019

37

iPOS CANopen Programming

Entry description:

Sub-index 00n
Description Number of entries
Access RW
PDO mapping No
0: Mapping disabled
EIDD FEMES 1 — 64: Sub-index 1 to x is valid
Default value 2
Sub-index 01n
Description 15t mapped object
Access RW
PDO mapping No
Value range UNSIGNED32
Default value 60410010n — Statusword
Sub-index 02n
Description 2" mapped object
Access RW
PDO mapping No
Value range UNSIGNED32
Default value 60640020n — position actual value

3.3.17 Object 1A03n: Transmit PDO4 Mapping Parameters

This object contains the mapping parameters of the transmit PDO4. For detailed description see object 1600 (Receive
PDO1 mapping parameters). By default, this PDO is disabled with object 1803n Sub-index 01 by setting Bit31 to 1.

Object description:

Index 1A03n
Name TPDO4 Mapping Parameter
Object code RECORD
Data type PDO Mapping
Entry description:
Sub-index 00n
Description Number of entries
Access RW
PDO mapping No
0: Mapping disabled
Value range 1 — 64: Sub-index 1 to x is valid
Default value 2
Sub-index 01n
Description 15t mapped object
Access RW
PDO mapping No
Value range UNSIGNED32
Default value 60410010n — Statusword
Sub-index 02n
Description 2" mapped object
Access RW
PDO mapping No
Value range UNSIGNED32
Default value 606C0020n — velocity actual value

3.3.18 Object 207Dn: Dummy

This object may be used to fill a RPDO up to a length matching the CANopen master requirements.
Object description:

Index 207Dn

Name Dummy

Object code VAR

Data type UNSIGNEDS8
Entry description:

Access RwW

PDO mapping Possible

Value range 0...255

Default value 0

© Technosoft 2019 38 iPOS CANopen Programming

3.4 Dynamic mapping of the PDOs

Follow the next steps to change the default mapping of a PDO:

Disable (destroy) the PDO by setting bit valid (Bit31) to 1b of sub-index 01n of the according PDO communication
parameter object (index 1400n-1403h for RxPDOs and 1800n-1803n for TXPDOs). The PDO COB-ID entry description is
described in Table 3.3.1.

Disable mapping. In the PDO’s mapping object (index 1600n-1603n for RxPDOs and 1A00n-1A03k for TXPDOs) set the
first sub-index 00n (the number of mapped objects) to 00k.

Map the new objects. Write in the PDOs mapping object (index 1600n-1603n for RxPDOs and 1A00n-1A03n for
TxPDOs) sub-indexes (1-8) the description of the objects that will be mapped. You can map up to 8 objects having 1
byte size.

Enable mapping. In sub-index 0 of the PDOs associated mapping object (index 1600r-1603h for RxPDOs and 1AQ0h-
1A03h for TXPDOs) write the number of mapped objects.

Enable (create) the PDO by setting bit valid (Bit31) to Ob of sub-index 01n of the according PDO communication
parameter object (index 1400n-1403n for RxPDOs and 1800n-1803h for TXPDOs).

3.5 RxPDOs mapping example

Map the Receive PDOS3 of axis number 06 with Controlword (index 6040r) and Modes of Operation (index 6060n).

1. Disable the RxPDO. Set Bit31 to 1b of sub-index 01n in object 1402, this will disable the RxPDO. The PDO
COB-ID entry description is described in Table 3.3.1.

Bit31 RxPDO3 Axis Node Resulting
valid COB-ID ID data
0p + 400n + 06 = 80000406n

Send the following message (SDO access to object 1402n sub-index 1, 32-bit value 80000406h):

COB-ID

Data

606

23 02 14 01 06 04 00 80

2. Change the communication parameters. For example purposes the communication parameters default
values are acceptable.

3. Disable mapping PDO. Write zero in object 1602, sub-index 0, this will the PDO’s mapping.

Send the following message (SDO access to object 1602, sub-index 0, 8-bit value 0):

COB-ID

Data

606

2F 02 16 00 00 00 00 00

4. Map the new objects.
a. Write in object 1602n sub-index 1 the description of the Controlword:

Index Sub-index Length e
data
6040n 00n 10n 60400010n
Send the following message (SDO access to object 1602, sub-index 1, 32-bit value 60400010n):
COB-ID Data
606 230216 01 10 00 40 60
b. Write in object 1602h sub-index 2 the description of the Modes of Operation:
Index Sub-index Length REESTILTIE
data
6060n 00n 08h 60600008h
Send the following message (SDO access to object 1602n sub-index 2, 32-bit value 60600008h):
COB-ID Data
606 23 02 16 02 08 00 60 60

5. Enable the RxPDO mapped objects. Set the object 1602h sub-index 0 with the value 2 to enable both mapped

objects.

Send the following message (SDO access to object 1602, sub-index 0, 8-bit value 2):

COB-ID

Data

606

2F 02 16 00 02 00 00 00

© Technosoft 2019

39

iPOS CANopen Programming

6. Enable the RxPDO. Set Bit31 to Ob of sub-index 01n in object 1402x, this will enable the RxPDO. Set in object
14021 sub-index 1 Bit31 to 0. The PDO COB-ID entry description is described in Table 3.3.1.

Bit31 RxPDO3 Axis Node Resulting
valid COB-ID ID data
Op + 400n + 06n = 00000406n

Send the following message (SDO access to object 1402, sub-index 1, 32-bit value 0x00000406):

COB-ID

Data

606

23 0214 01 06 04 00 00

3.6 TxPDOs mapping example

Map the Transmit PDO4 of axis number 06 with Position actual value (index 6064n) and Digital inputs (index 60FDn).

Disable the TxPDO. Set Bit31 to 1b of sub-index 01n in object 1803, this will disable the TxPDO. The PDO COB-ID
entry description is described in Table 3.3.1.

Bit31 TxPDO4 Axis Node Resulting
valid COB-ID ID data
Op + 480n + 06h = 80000486n

Send the following message (SDO access to object 1801n sub-index 1, 32-bit value 80000486n):

COB-ID

Data

606

23 03 18 01 86 04 00 80

Set the transmission type. Write 255 in object 1803n sub-index 2. This will set the transmission type as asynchronous,
meaning that the PDO will be sent every time anything changes in its data field.

Send the following message (SDO access to object 1803n sub-index 2, 8-bit value FFn):

COB-ID

Data

606

2F 03 18 02 FF 00 00 00

Set inhibit time. Write 1000 in object 1803 sub-index 3. This will set an inhibit time of 100ms. This means that even
though the PDO should be sent faster, it will be sent at minimum 100ms intervals.

Send the following message (SDO access to object 1803 sub-index 3, 16-bit value 03E8h):

COB-ID

Data

606

2B 03 18 03 E8 03 00 00

Set event timer. Write 1000 in object 1803n sub-index 5. This will set an event timer of 1000 ms. This means that the
PDO will be sent at 1000ms intervals, even if nothing changes in its data field.

Send the following message (SDO access to object 1803 sub-index 5, 16-bit value 03E8h):

COB-ID

Data

606

2B 03 18 05 E8 03 00 00

Disable the PDO mapping. Write zero in object 1A03h sub-index 0, this will disable the PDO’s mapping.

Send the following message (SDO access to object 1A03h sub-index 0, 8-bit value 0):

COB-ID

Data

606

2F 03 1A 00 00 00 00 00

Map the new objects.
a. Write in object 1A03h sub-index 1 the description of the Position actual value:

Index Sub-index Length Re:ultlng
ata
6064n 00n 20n 60640020n
Send the following message (SDO access to object 1A03h sub-index 1, 32-bit value 60640020n):
COB-ID Data
606 23 03 1A 01 20 00 64 60
b. Write in object 1A03n sub-index 2 the description of the Digital inputs:
Index Sub-index Length REESTILTTIE
data
60FDn 00n 20n 60FD0020n
Send the following message (SDO access to object 1A03h sub-index 2, 32-bit value 60FD0020k):
COB-ID Data
606 23 03 1A 02 20 00 FD 60

© Technosoft 2019

40

iPOS CANopen Programming

Enable the TxXPDO mapped objects. Set the object 1A03n sub-index 0 with the value 2 to enable both mapped objects.

Send the following message (SDO access to object 1A03h sub-index 0, 8-bit value 2):

COB-ID

Data

606

2F 03 1A 00 02 00 00 00

Enable the TxPDO 4. Set Bit31 to Ob of sub-index 01n in object 1803, this will enable the TxPDO 4. Set in object 1803n
sub-index 1 Bit31 to 0. The PDO COB-ID entry description is described in Table 3.3.1.

Bit31 TxPDO4 Axis Node Resulting
valid COB-ID ID data
Op + 480n + 06n = 00000486n

Send the following message (SDO access to object 1803 sub-index 1, 32-bit value 0x00000486):

COB-ID

Data

606

23 03 18 01 86 04 00 00

Start remote node 6. Send a NMT message to start the node id 6. This message is to enable the use of the PDOs.

Send the following message:

COB-ID

Data

0

0106

After the last message, the drive will start emitting at 1s intervals data with COB-ID 0x486 showing the motor actual
position and the Digital input status. If the encoder is rotated, the PDO will be sent every time the position changes, but
not faster than 100ms.

© Technosoft 2019

41

iPOS CANopen Programming

4 Network Management

4.1 Overview

The Network Management (NMT) services initialize, start, monitor, reset or stop the CANopen nodes. The NMT requires
a node in the network (a PC or a PLC) to be designed as a network manager while the Technosoft intelligent drives are
the NMT slaves. The NMT services are fulfilled by the NMT objects described later in this chapter.

411 Network Management (NMT) State Machine

Figure 4.1.1 shows the NMT state diagram of a CANopen device. After finishing the initialization, the iPOS drive
enters the NMT state Pre-operational. During this state, both the communication parameters and drive parameters
can be changed using SDO messages. In this state, the PDO messages are defined. Once entered in the operational
mode, the drive is typically controlled via PDO messages.

I (1)

Initialisation

N

YVYY

)

Y

(14)
4[Pre-operational
13)

A
(

(12) ‘
4[Operational

Figure 4.1.1. NMT state diagram

Stopped]—

=

—
(]

-

—_
~
N
(9]
AN J |\ J
) — IYYY
N
[e) ~
-
—_
N
o
=

Table 4.1.1 — NMT state transitions

(1) At Power on the NMT state initialization is entered autonomously
@) NMT state initialization finished - enter NMT state Pre-operational

automatically

(3) NMT service start remote node indication or by local control
(4),(7) NMT service enter pre-operational indication

(5),(8) NMT service stop remote node indication

(6) NMT service start remote node indication

(9),(10),(11) NMT service reset node indication
(12),(13),(14) NMT service reset communication indication

41.2 Device control

Through Module Control Services, the NMT master controls the state of the NMT slaves. The following states are
implemented on the Technosoft drives:

State Description
The drive enters the pre-operational state after finishing its initialization. In this
Pre-operational state the communication between the CANopen master and the drive can be done

only via SDOs. PDOs are not allowed.

This is the normal operating state of the drives. The communication through SDO
and PDO is allowed

In this state, the drive stops the communication except the network management
messages.

Operational

Stopped

© Technosoft 2019 42 iPOS CANopen Programming

The network manager can change the state of the drives using one of the following services:

Service Description

Start The NMT master sets the state of the selected NMT slave to operational
Remote Node

ity The NMT master sets the state of the selected NMT slave to stopped
Remote Node

Enter

. The NMT master sets the state of the selected NMT slave to pre-operational
Pre-Operational

The NMT master sets the state of the selected NMT slave to the “reset application”
Reset Node sub-state. In this state, the drives perform a software reset and enter the pre-
operational state.
The NMT master sets the state of the selected NMT slave to the “reset
communication” sub-state. In this state the drives resets their communication and
enter the pre-operational state.

Reset
Communication

All the services are unconfirmed.

41.21 Enter Pre-Operational

Used to change NMT state of one or all NMT slaves to “Pre-Operational”.

cs 0x80 Command specifier for NMT command Enter Pre-Operational
Node 1...127 NMT slave with corresponding Node ID will enter in NMT state Pre-Operational
ID 0 All NMT Slaves will enter NMT state Pre-Operational
NMT master NMT slave(s)
> :;2 > Example for Axis 6. Enter Pre-Operational.
X
byto 0 bym COB-ID Data
0 80 06
Figure 4.1.2. NMT Enter Pre-Operational
41.2.2 Reset communication
Used to reset communication of one or all NMT slaves.
cs 0x82 Command specifier for NMT command Reset Communication
Node 1...127 NMT slave with corresponding Node ID will reset communication
ID 0 All NMT Slaves will reset communication
NMT master NMT slave(s)
N Cﬁ’: o ,?;32 N Example for Axis 6. Reset communication.
b‘;:j% by't21 COB-ID Data
0 82 06
Figure 4.1.3. NMT Reset Communication
4.1.2.3 Reset Node
Used to reset one or all NMT slaves.
cs 0x81 Command specifier for NMT command Reset Node
Node 1...127 NMT slave with corresponding Node ID will reset
ID 0 All NMT Slaves will reset
NMT master NMT slave(s)
CAN ID=0x00 .
Example for Axis 6. Reset node.
—> N —>
Lo | " | COBID Data
byte 0 byte 1 0 8106

Figure 4.1.4. NMT Reset Node

© Technosoft 2019 43 iPOS CANopen Programming

41.2.4 Start Remote Node

Used to change NMT state of one or all NMT slaves to “Operational”. PDO communication will be allowed.

cs 0x01 Command specifier for NMT command Start Remote Node
Node 1...127 NMT slave with corresponding Node ID will enter “Operational” state
ID 0 All NMT Slaves will enter “Operational” state
NMT master NMT slave(s)

N Example for Axis 6. Start Remote Node.

01 COB-ID Data

yte 0 byte 1
0 01 06

Figure 4.1.5. NMT Start Remote Node

41.2.5 Stop Remote Node
Used to change NMT state of one or all NMT slaves to “Stopped”.

cs 0x02 Command specifier for NMT command Stop Remote Node
Node 1...127 NMT slave with corresponding Node ID will enter “Stopped” state
ID 0 All NMT Slaves will enter “Stopped” state
NMT master NMT slave(s)

CAN ID=0x00 .

R R Example for Axis 6. Stop Remote Node.
by)t(eO v COB-ID Data
0 02 06

Figure 4.1.6. NMT Stop Remote Node

41.3 Device monitoring

In addition to controlling the drive states, the NMT provides services for monitoring the nodes in the network. The
monitoring services are achieved mainly through the periodical transmission of messages by the network manager, with
answers from the slaves, or messages sent by the slaves without master intervention. Monitoring services can use the
Node Guarding protocol (including Life Guarding) or the Heartbeat protocol.

41.31 Node guarding protocol

The master polls each NMT slave at regular time intervals. This time interval is called the guard time and may be different
for each NMT slave. The slaves answer with a node-guarding message containing their state. This allows both the
master and the slave to identify a network error if either the remote request or the guarding messages stop.

The node life time is computed as the product between the guard time (index 100Cr) and the life time factor (index
100Dw). If the drive is not accessed within the life time then a Life Time event occurs and an emergency telegram is
sent.

4.1.3.2 Heartbeat protocol

The Heartbeat protocol defines an error control service without the need of remote frames. It implies independent and
cyclical transmission of a telegram by the drive (the Heartbeat producer) indicating the drives current state. The time
interval between two heartbeat messages is specified through producer heartbeat time (index 1017h). The master
(Heartbeat consumer) guards the reception of the heartbeat messages within the Heartbeat Consumer Time. If the
value of this object is 0, the heartbeat transmission is disabled. If the master does not receive the heartbeat message
this indicates a problem with the drive or with its network connection.

4.1.3.3 Boot-up protocol

This protocol is used by the drive to signal to the network master that it has entered the state pre-operational. When the
drive is powered on for the time or is reset, it will send a boot-up message with the COB-ID (0x700+ Node Id) and Data
00.

41.3.4 Synchronization between devices

The synchronization message (SYNC with COB ID 0x80 and no Data) allows synchronizing the devices in the network
and triggering the synchronous transmission of PDOs. The SYNC producer broadcasts the synchronization message
periodically. This service is unconfirmed. Technosoft intelligent drives can act both as SYNC consumer and producer.

There are two ways to synchronize the drive in a network:

1. Send only the sync message with the COB ID 0x80 and Data null at very precise intervals. This method is the most
commonly used and its accuracy is based on how precise the master sends the SYNCS and the CAN bus load

© Technosoft 2019 44 iPOS CANopen Programming

2. For time critical applications, which require more accurate synchronization, the Technosoft drives can use the optional
high-resolution synchronization protocol, which employs a special form of time stamp message. The High Resolution
Time Stamp can be set with the COB ID 0x100 and 4 bytes of data that represent a time stamp with a resolution of 1ps.
When the master sends a time stamp with the COB ID 0x100 it has the same effect as writing the same value to all the
slaves in the network in object 1013 n. With this second method, the master sends the sync message (0x80) followed
immediately by the time stamp message with the id 0x100.

When one of the Technosoft drives is set as synchronization master, the High resolution time stamp is by default sent
using the COB ID defined in COB-ID High Resolution Time Stamp object (index 2004+).

41.4 Emergency messages

A drive sends an emergency message (EMCY) when a drive internal error occurs. An emergency message is
transmitted only once per ‘error event’. As long as no new errors occur, the drive will not transmit further emergency
messages.

The emergency error codes supported by the Technosoft drives are listed in Table 4.1.2. Details regarding the
conditions that may generate emergency messages are presented at object Motion Error Register index 2000n.

Table 4.1.2 — Emergency Error Codes

Error code (hex) Description

0000 Error Reset or No Error

1000 Qeneric Error; sent when a communication error occurs on CAN (object 2000n
bit0=1; usually followed by EMCY code 0x7500

2310 Continuous over-current

2340 Short-circuit

3210 DC-link over-voltage

3220 DC-link under-voltage

4280 Over temperature motor

4310 Over temperature drive

5441 Drive disabled due to enable or STO input

5442 Negative limit switch active

5443 Positive limit switch active

6100 Invalid setup data

7300 Sensor error; this emergency message also contains other data; see its description
at the end of this table

7500 Communication error; this emergency message also contains other data; see its
description at the end of this table

8110 CAN overrun (message lost)

8130 Life guard error or heartbeat error

8331 12t protection triggered

8580 Position wraparound

8611 Control error / Following error

9000 Command error

FFO1 Generic interpolated position mode error (PVT / PT error); this emergency message
also contains other data; see its description at the end of this table

FF02 Change set acknowledge bit wrong value

FFO3 Specified homing method not available

FF04 A wrong mode is set in object 6060n, modes of operation

FF05 Specified digital I/O line not available

FF06 Positive software position limit triggered

FFO7 Negative software position limit triggered

FFO8 Enable circuit hardware error

41.41 Emergency message structures

The Emergency message contains 8 data bytes having the following contents:
Most EMCY messages:

0 1 2 3 7
Error Register o)
Emergency Error Code (Object 1001n) Manufacturer specific error field
0x7500 Communication error:
0 1 2 3 4 5 7
Emeraency Error Code Error Register Communication Error Register =~ Manufacturer specific error
gency (Object 1001n) (Object 2003n) field

© Technosoft 2019 45 iPOS CANopen Programming

0x7300 Sensor error:

0 1 2 3) 4 5 7
Error Register Detail Error Register 2 Manufacturer specific error
(Object 10011) (Object 2009n) field

Remark: for the firmware F508x/509x and F523x/524x, 0x7300 means either a digital hall sensor missing or position
wraparound.

Emergency Error Code

0xFFO01 Generic interpolated position mode error (PVT / PT error):

0 1 2 3 4 5 7
Emergency Error Error Register Interpolated position status Manufacturer specific error
Code (0xFFO01) (Object 1001n) (Object 2072n) field

To disable the sending of PVT emergency message with ID OxFFO01, the setup variable PVTSENDOFF must be set to
1.

4.2 Network management objects

The section describes the objects related to network management

421 Object 1001n: Error Register

This object is an error register for the device. The device can map internal errors in this byte. This entry is mandatory
for all devices. It is a part of an Emergency object.

Object description:
Index 1001n
Name Error register
Object code VAR
Data type UNSIGNEDS8
Entry description:
Access RO
PDO mapping No
Value range UNSIGNEDS8
Default value No

Table 4.2.1 — Bit description of object 1001x

Bit Description

Generic error

Current

Voltage

Temperature
Communication error
Device profile specific
Reserved (always 0)
Manufacturer specific.

Valid bits while an error occurs — bit 0 and bit 4. The other bits will remain 0.

N[O ORAWIN =IO

4.2.2 Object 1003h: Pre-defined error field

This object provides the errors that occurred on the iPOS drive and were signaled via the emergency object. If no error
was signaled, sub-index 00n reports 0 entries. The object can report up to 5 emergency messages recently transmitted.
The last reported error will always be set in sub-index 1.

Object description:

Index 1003n

Name Pre-defined error field
Object code ARRAY

Data type UNSIGNED32

© Technosoft 2019 46 iPOS CANopen Programming

Entry description:

423

Sub-index 00n

Description Number of errors in history
Access RO

PDO mapping No

Value range 1.5

Default value 0

Sub-index 01n

Description Standard error field
Access RO

PDO mapping No

Value range UNSIGNED32
Default value -

Sub-index 02nto 05n
Description Standard error field
Access RO

PDO mapping No

Value range UNSIGNED32

Default value

Object 1005,: COB-ID of the SYNC Message

This object defines the COB-ID of the Synchronization Object (SYNC) and whether the drive generates the SYNC or

not.
Object description:

Entry description:

Index 1005n

Name COB-ID SYNC Message
Object code VAR

Data type UNSIGNED32

Access RW

PDO mapping No

Value range UNSIGNED32

Default value 80n

The structure of the parameter is the following:

Table 4.2.2 — Bit description of object 1005x

Bit Value Description
31 X Reserved
30 0 Drive does not generate synchronization messages
1 Drive is the synchronization master (SYNC producer)
29 0 Use 11 bit identifier
1 Use 29 bit identifier
28..11 X Bit 11...28 of 29-bit SYNC COB-ID
10...0 X Bit 0...10 of SYNC COB-ID

The first transmission of SYNC object starts within 1 sync cycle after setting bit 30 to 1. It is not allowed to change bit
0...29, while the object exists (bit 30 = 1).

4.2.4 Object 1006n: Communication Cycle Period

The object defines the time interval between SYNC messages expressed in us. A drive sends SYNC messages if it is
configured to send SYNC messages through object 1005 and the object 10061 is set with a non-zero value.

Object description:

Index 1006n
Name Communication cycle period
Object code VAR
Data type UNSIGNED32
Entry description:
Access RW
PDO mapping No
Value range UNSIGNED32
Default value 0
© Technosoft 2019 47 iPOS CANopen Programming

4.2.5 Object 1010n: Store parameters

This object controls the saving of certain object parameters in the non-volatile memory. By writing 65766173 (“save” in
/ISO8859/ characters) into sub--index 01n, the drive stores the parameters of the following objects:

1400n-1403k;

1600n-1603k;

1800n-1803k;

1A00n-1A03;

1005h; 1006n; 100Ch; 100Dn; 1014n; 1017h;

207Bn; 207C;

6007h; 605An; 605Bh; 605Ch; 605Dh; 605Eh; 6060n; 6065h; 6066h; 6067h; 6068h; 607An; 607Ch; 607Dn; 607Ew,;
6081h; 6083n; 6085h; 6098h; 6099h; 609AK; 60FFn.

By reading sub-index 01n of object 1010n, the reply shall be 0x00000001, meaning the device does not save parameters
autonomously and it saves them on command.

On reception of the correct signature in 01n sub-index, the drive will confirm the SDO transmission (SDO download
response). Because storing of drive parameters lasts more than an SDO write command, always wait for the SDO
confirmation message.

After save command is performed, the iPOS, shall always load the parameters of the previously mentioned objects at
startup. To restore the default standard values see Object 1011h: Restore parameters.

Object description:
Index 1010n
Name Store parameters
Object code ARRAY
Data type UNSIGNED32
Entry description:
Sub-index 00n
Description highest sub-index supported
Access RO
PDO mapping No
Value range 1
Default value 1
Sub-index 01n
Description Save parameters
Access RW
PDO mapping No
Value range UNSIGNED32
Default value -

To save the parameters of the objects previously mentioned, send the following command:

(SDO access to object 1010n sub-index 1, 32-bit value 6576617 3n)

COB-ID Data

606 2310100173 6176 65

4.2.6 Object 1011n: Restore parameters

This object restores certain object parameters to their default values. By writing 64616F6Ch (“load” in /ISO8859/
characters) into sub--index 01, the drive restores to their default values the parameters of the following objects :

14001-1403h;

1600n-1603k;

1800n-1803k;

1A00n-1A03k;

1005n; 1006h; 100Ch; 100Dh; 1014h; 10175;

6065h; 6066h; 6067h; 6068h; 6060n; 607Ch; 6081h; 6083h; 6098h; 6099h; 60FFh

By reading sub-index 01 of object 1011n, the reply shall be 0x00000001, meaning the device can restore CANopen
parameters to their default value.

The default values will be set valid after the iPOS drive is reset.

© Technosoft 2019 48 iPOS CANopen Programming

Object description:

Index 1011n
Name Restore default parameters
Object code ARRAY
Data type UNSIGNED32
Entry description:
Sub-index 00n
Description highest sub-index supported
Access RO
PDO mapping No
Value range 1
Default value 1
Sub-index 01n
Description Restore all default parameters
Access RW
PDO mapping No
Value range UNSIGNED32

Default value

To restore the object parameters to their default values, send the following command:
(SDO access to object 10111 sub-index 1, 32-bit value 64616F6C n)

COB-ID Data

606 231110 01 6C 6F 61 64

4.2.7 Object 100Ch: Guard Time

The Guard Time object multiplied with Lifetime Factor (index 100Dn) gives the Lifetime of the drive for the Life Guarding
Protocol. The Guard Time is expressed in ms. When the Life Guarding Protocol is not used the object must be set to 0.
When the Node Guarding is active, i.e. the network manager sends the Node Guarding messages, the Life Guarding
Protocol checks if the master has stopped sending messages or not. The decision of Node Guarding failure is taken if
no message from the master is received within the period defined as Lifetime.

Object description:

Index 100Ch

Name Guard time

Object code VAR

Data type UNSIGNED16
Entry description:

Access RW

PDO mapping No

Value range UNSIGNED16

Default value 0

4.2.8 Object 100Dx: Life Time Factor

The lifetime factor multiplied with the guard time gives the lifetime for the Life Guarding Protocol. Must be 0 if not used.
Object description:

Index 100Dn

Name Life time factor

Object code VAR

Data type UNSIGNED8
Entry description:

Access RW

PDO mapping No

Value range UNSIGNED8

Default value 0

4.2.9 Object 1013n: High Resolution Time Stamp

This object can receive a time stamp with a resolution of 1us (1 unit = 1us). It can be used in order to synchronize the
drives in the CANopen network.

When setting up the synchronization mechanism, the master can map the object 1013+ on a receive PDO whose COB-
ID should be identical on all the slave drives that need to be synchronized.

© Technosoft 2019 49 iPOS CANopen Programming

This object has to be written immediately after the SYNC message (the one that has the COB-ID 0x80). Upon the time
reception in this object, the drive will compensate for the difference between the received value and its internal clock
value.

The object also provides the drives internal clock value with a resolution of 1us when read. It can be mapped to a TxPDO
to transmit a precise time over the network.

Remark 1: the drive internal clock will not be read anymore if a value is written into object 1013n. When object 1013 is
read, it will give either the internal clock or the last value written in it.

Remark 2: If a 4 byte (32bit) High Resolution Time Stamp is sent with the COB ID 0x100 right after the sync message
(with ID 0x80), all the drives in the network will receive the time data as if it was received into object 101 3n.

Example: ID 0x100 Data 00 00 E8 03 — absolute time is 1000 (0X03E8) us = 1ms.

Object description:
Index 1013n
Name High resolution time stamp
Object code VAR
Data type UNSIGNED32
Entry description:
Access RW
PDO mapping Possible
Value range UNSIGNED32
Default value 0

4210 Object 20041: COB-ID of the High-resolution time stamp

This object defines the COB-ID used by the high-resolution time stamp message sent by the synchronization master
(when the drive is configured as a SYNC producer) in order to achieve synchronization on the network.

When the drive is the SYNC producer, this object defines if the high resolution time stamp is sent or not.
Object description:

Index 2004n
Name COB-ID High resolution time stamp
Object code VAR
Data type UNSIGNED32
Entry description:
Access RW
PDO mapping No
Value range UNSIGNED32
Default value 100n

The structure of the parameter is the following:

Bit Value Meaning
31 0 High resolution time stamp exists / is valid

1 High resolution time stamp does not exist / is not valid
30 0 Reserved (always 0)

0 11 bit ID
29 1 29 bit ID
28..11 X Bit 11...28 of 29-bit High resolution time stamp COB-ID
10...0 X Bit 0...10 of High resolution time stamp COB-ID

It is not allowed to change bits 0-29 while the object exists (bit 31=0).

This object will be used when a Technosoft drive is required to be the master for the synchronization messages. In this
case, the CANopen master does not need to map the 10131 into a receive PDO.

4.211 Configure the drive as a SYNC master Example

The procedure to activate the synchronization is the following:

= Set the SYNC interval. Write the desired SYNC interval into the object 1006n (Communication Cycle Period).
For example — 20 ms.

Send the following message (SDO access to object 1006n sub-index 0, 32-bit value 0x4E20 = 20000 ps = 20 ms):

COB-ID Data
606 23 06 10 00 20 4E 00 00

= Activate the SYNC producer. Set bit 30 in object 1005x (COB-ID of SYNC Message).

© Technosoft 2019 50 iPOS CANopen Programming

Send the following message (SDO access to object 10051 sub-index 0, 32-bit value 40000080n):
COB-ID Data
606 23 0510 00 80 00 00 40

The drive will start sending sync messages with COB ID 0x80 Data null. It will also send time stamp messages with
COB ID 0x100 Data 0x12 0x34 0x56 0x78 0x00 0x00 where 0x000078563412 is the time stamp data expressed in ps.
Also, if in object 2004, the time stamp is disabled, the sync producer will emit only sync messages with COB ID 0x80.

4.2.12 Object 1014n: COB-ID Emergency Object
Index 1014n defines the COB-ID of the Emergency Object (EMCY).

Object description:
Index 1014n
Name COB-ID Emergency message
Object code VAR
Data type UNSIGNED32
Entry description:
Access RW
PDO mapping No
Value range UNSIGNED32
Default value 80n + Node-ID

Table 4.2.3 — Structure of the EMCY Identifier

MSB LSB
31 30 29 28 - 11 10-0

0/1 0 1 000000000000000000 11-bit Identifier

0/1 0 1 29 —bit Identifier

Table 4.2.4 — Description of the EMCY COD-ID entry

Bit Value Description

0 EMCY exists / is valid
31(MSB) 1 EMCY does not exist / is not valid
30 0 Reserved
29 0 Use 11 bit identifier

1 Use 29 bit identifier (not supported)
28...11 0 Reserved
10...0 (LSB) X Bit 0...10 of COB-ID

It is not allowed to change Bits 0-29, while the object exists (Bit 31=0).

4.2.13 Object 1017n: Producer Heartbeat Time

This object defines the cycle time of the heartbeat (if not equal to zero). If the heartbeat is not used, this object must
have the default value 0. The time has to be a multiple of 1 ms.

Object description:
Index 1017n
Name Producer Heartbeat Time
Object code VAR
Data type UNSIGNED16
Entry description:
Access RW
PDO mapping No
Value range UNSIGNED16
Default value 0

© Technosoft 2019 51 iPOS CANopen Programming

5 Drive control and status

5.1

CiA402 State machine and command coding

The state machine from Drives and motion control device profile (CiA 402) describes the drive status and the
possible control sequences of the drive. The drive has to pass through the described states in order to control the motor.
The drive states can be changed by the object 6040n (Controlword) and/or by internal events. The drive current state
is reflected in the object 6041n_(Statusword). Figure 5.1.1 describes the state machine of the drive along with
Controlword and Statusword values for each transition. Table 5.1.1 describes each transition present in the state

machine.

Not ready to
switch on

POxx. xxxx.x0xx.0000)

1

S SR,
Switch on

+— 0 —@ Start

(drive power up)

Fault reset

XXXXXXX&(fXXX.XXXX

Low-level power
Logic supply is present

Motor supply can be present or not

12

Quick stop
active

A 4

Z Y

disabled

15

Fault

Shutdown

oo x1xx.0000 ¢

7

XXXX.XXXX.0xxX.x110 |
Disable voltage

XXXX.XXXX. 0XXX. XXOX|

10

Disable voltage

XXXXXXXX.0XXX.XXOX|

Switch On

e e

Ready to

7'y

switch on

xxxx.xxxx.X01x.0001

—
6

XXXX.XXXX.0xXX.0111 |

Shutdown

3

Swiched on

XXxX.Xxxx.x00x.0111

Enable Operation

pxxx.xxxx.x011.0011

5

XXXX.XXXX.0xxX. 1111 |

4 hoooxxoox.0xxx.0111

Enable operation

XXXX.XXXX.0xxx.1111

16—

XXXX.XXXX.0xxX.X110)|

Switch On

Operation

8

1
Shutdown
XXXX.XXXX.

PXxxx.xxxx.x0xx.1000

9

Disable voltage

XXXX.XXXX.0XXX.XX0X

0xxx.x110|

enabled

XXXXXXXXXXXX. XXXX

1
Quick stop

XXX XXXX. 0XXX.X01X

6041n Statusword

binary

xxxx.xxxx.x011.0111

value

Command name

XXXXXXXXXXXX. XXXX

Error

detected

r'y

Fault reaction
active

XXXX.XXXX.X0xx.1111
[y

6040n Controlword

binary value

Figure 5.1.1. Drive’s status machine. States and transitions

Table 5.1.1 — Drive State Transitions

High-level power

Motor supply must be present

(6041n.4= 1)
No torque applied on motor

Torque

Motor supply must be present

(6041n.4= 1)
Torque applied on motor

Transition Event Action
0 Automatic trans!tlon after power- Hardware Initialization
on or reset application
1 Automatic transition. In|t|a||zat|_on (_:om_plete_d successfully.
Communication is active
Bits 1 and 2, are set in
Controlword (Shutdown
2 None
command).
Motor voltage may be present.
3 (B;Ict;t(r)é}v\?or}(éz 1) S Motor supply voltage must be present (6041h bit 4=1). The undervoltage
o e A protection is active. The motor will not be powered and have no torque.
(Switch On command)
Motion function and power stage are enabled, assuming the enable or STO
input is also enabled. Depending on the mode of operation that is set, the
Bits 0,1,2 and 3 are set in motor will apply torque and keep its current position or velocity to 0. Depending
4 Controlword on the motor start mode, this transition may take more than a few ms to finish.
(Enable Operation command) Example: When using the start mode “Move till aligned with phase A” which is
the default method, the first executed Enable operation transition takes 2
seconds.

© Technosoft 2019

52 iPOS CANopen Programming

Bit 3 is cancelled in Controlword Motion function is inhibited. The drive will execute the instructions from Object
5 (Disable Operation command) 605Ch: Disable operation option code and finally transition into Switched On
state. The motor has no torque.
6 ?é%%;;oczgiﬂ:ﬁ?n;‘nigf ntrolword Motor supply may be disabled. Motor has no torque.
Bit 1 or 2 is cancelled in
7 Controlword (Quick Stop or None
Disable Voltage command)
oA . The drive will execute the instructions from Object 605Bh: Shutdown option
8 e Lt s code and finally transition into Ready to switch on state. The motor has no
(Shutdown command) torque
oA . The drive will execute the instructions from Object 605Ch: Disable operation
9 I(BDIti;aEI:i;]oifelwlgg (':) rgr?]r:;icw gogtitg?qi%de and finally transition into Switch on disabled state. The motor has
Bit 1 or 2 is cancelled in
10 Controlword (Quick Stop or Motor supply may be disabled. Drive has no torque.
Disable Voltage command)
1 Bit 2 is cancelled in Controlword The drive will execute the instructions from Object 605Ah: Quick stop option
(Quick Stop command) code.
Quick Stop is completed or bit 1 is
12 cancelled in Controlword Output stage is disabled. Motor has no torque.
(Disable Voltage command)
13 Fault signal Exgcute specific fault treatment routine from Object 605Eh: Fault reaction
option code
14 The fault treatment is complete The drive function is disabled
Some of the bits from Object 2000h: Motion Error Register are reset. If all the
15 Bit 7 is set in Controlword error conditions are reset, the drive returns to Switch On Disabled status. After
(Reset Fault command) leaving the state Fault bit 7, Fault Reset of the Controlword has to be cleared
by the host.
Bit 2 is set in Controlword (Enable
16 t?: fsrﬁfé,%nig%rggqug)i} -E?LIIIS'CK- Stop- Drive exits from Quick Stop state. Drive function is enabled.
Option-Code is 5, 6, 7 or 8

Table 5.1.2 — Drive States

State Description
Not Ready to The dr!ve perfo.rms. ba§ic initializations after power-on.
switch on The dnvelf.unctlon is dlsablgd .

The transition to this state is automatic.

The drive basic initializations are done and the green led must turn-on if no error is detected. The drive is not
Switch on Ready to switch on; any drive parametgrs can be modified, including a comp]ete update of the whqle EEPRQM
Disabled data (setup table, TML program, cam files, etc.) The motor supply can be switched on, but the motion functions

cannot be carried out yet.
The transition to this state is automatic.

Ready to switch The motor supply voltage may be switched on, most of the drive parameter settings can still be modified, and
on motion functions cannot be carried out yet.

Sriidize Gl The motor supply voltage must be applied. The power stage is switched on (enabled). The motor is kept with

g?peratlon zero torque reference. The motion functions cannot be carried out yet.
isabled)

No fault present, power stage is switched on, motion functions are enabled. If the operation mode set performs
Operation position control, the motor is held in position. If the operation mode set performs speed control, the motor is
Enabled kept at zero speed. If the operation mode is torque external, the motor is kept with zero torque. From this state,

the motor can execute motion commands.

Drive has been stopped with the quick stop deceleration. The power stage is enabled. If the drive was operating
Quick Stop in position control when quick stop command was issued, the motor is held in position. If the drive was operating
Active in speed control, the motor is kept at zero speed. If the drive was operating in torque control, the motor is kept

at zero torque.

Fault Reaction

Active The drive performs a default reaction to the occurrence of an error condition

The motor power is turned off. The drive remains in fault condition, until it receives a Reset Fault command. If

el following this command, all the bits from the Motion Error Register are reset, the drive exits the fault state

© Technosoft 2019 53 iPOS CANopen Programming

5.2 Drive control and status objects

5.21 Object 6040n: Controlword

The object controls the status of the drive. It is used to enable/disable the power stage of the drive, start/halt the motions
and to clear the fault status. The status machine is controlled through the Controlword.

Object description:
Index 6040n
Name Controlword
Object code VAR
Data type UNSIGNED16
Entry description:
Access RW
PDO mapping Yes
Units -
Value range 0 ... 65535
Default value No

Table 5.2.1 — Bit Assignment in Controlword

Bit Value Meaning
15 0 Registration mode inactive
1 Activate registration mode
0 When an update is performed, keep unchanged the demand values for speed and
position (TML command TUM1;)
1 When an update is performed, update the demand values for speed and position with
the actual values of speed and position (TML command TUMO;)
13 When it is set, it cancels the execution of the TML function called through object 2006k.
The bit is automatically reset by the drive when the command is executed.
0 No action
12 If bit 14 = 1 — Force position demand value to 0
1 If bit 14 = 0 — Force position actual value to 0
This bit is valid regardless of the status of the drive or other bits in Controlword
11 Manufacturer Specific - Operation Mode Specific. The meaning of this bit is detailed
further in this manual for each operation mode
10-9 Reserved. Writes have no effect. Read as 0
No action

14

Halt command — the motor will slow down on slow down ramp

No action

Reset Fault. The faults are reset on 0 to 1 transition of this bit. After a Reset Fault
command, the master has to reset this bit.

5 Operation Mode Specific. The meaning of these bits is detailed further in this manual for
each operation mode

Enable Operation

Quick Stop

Enable Voltage

Switch On

- O~ |O

o= INw| H

The following table lists the bit combinations for the Controlword that lead to the corresponding state transitions. An X
corresponds to a bit state that can be ignored. The single exception is the fault reset: The transition is only started by a
bit transition from 0 to 1.

Table 5.2.2 — Command coding in Controlword

Command Bit in object 6040, Transition

Bit 7 Bit3 Bit2 Bit1 Bit0
Shutdown 0 X 1 1 0 2,6,8
Switch on 0 0 1 1 1 3
Disable voltage 0 X X 0 X 7,9,10,12
Quick stop 0 X 0 1 X 7,10,11
Disable operation 0 0 1 1 1 B
Enable operation 0 1 1 1 1 4,16

1

Fault reset ot X X X X 13

For the command coding values see also Figure 5.1.1. Drive’s status machine. States and transitions.

© Technosoft 2019 54 iPOS CANopen Programming

5.2.2 Object 6041nh: Statusword

Object description:

Index 6041n

Name Statusword

Object code VAR

Data type UNSIGNED16
Entry description:

Access RO

PDO mapping Yes

Units -

Value range 0 ... 65535

Default value No

The Statusword has the following bit assignment:

Table 5.2.3 — Bit Assignment in Statusword

Bit Value Description
15 0 Axis off. Power stage is disabled. Motor control is not performed
1 Axis on. Power stage is enabled. Motor control is performed
14 0 No event set or the programmed event has not occurred yet
1 Last event set has occurred
13.12 Operation Mode Specific. The meaning of these bits is detailed further in this
" manual for each operation mode
11 Internal Limit Active — see Remark 1 below
10 Target reached
0 Remote — drive is in local mode and will not execute the command message.
9 1 Remote — drive parameters may be modified via CAN and the drive will execute
the command message.
0 No TML function or homing is executed. The execution of the last called TML
8 function or homing is completed.
1 A TML function or homing is executed. Until the function or homing execution
ends or is aborted, no other TML function / homing may be called
0 No Warning
7 1 Warning. A TML function / homing was called, while another TML function /
homing is still in execution. The last call is ignored.
6 Switch On Disabled.
5 Quick Stop. When this bit is zero, the drive is performing a quick stop
4 0 Motor supply voltage @s absent See Remark 2 below
1 Motor supply voltage is present
3 Fault. If set, a fault condition is or was present in the drive.
2 Operation Enabled
1 Switched On
0 Ready to switch on

The drive state can be identified when Statusword coding is the following:

Table 5.2.4 — State coding in Statusword

Statusword

Drive state

XXXX XXxX XOxx 0000p

Not Ready to switch on

XXXX XXXX X1xx 0000p

Switch on disabled

XXXX XxxX X01x 0001y

Ready to switch on

XXXX XxxX X01x 0011y

Switched on

XXXX XXxX X01x 0111p

Operation enabled

XxxX xxxx x00x 0111p

Quick stop active

XXXX XXXX XOxX 1111p

Fault reaction active

XXXX XXxX XOxx 1000p

Fault

For the state coding values see also Figure 5.1.1. Drive’s status machine. States and transitions.

Remark 1: Bit11 internal limit active is set when either the Positive or Negative limit switches is active. If the internal
register LSACTIVE = 1 or object 60B8h bit 6 = 1, this bit will not be set and the emergency messages for the active limit

switches will be disabled.

Remark 2: Bit 4 shows whether the +Vmot Input is supplied. The state machine cannot transition to states Switched On
and Operation enabled without this bit being set first. If this bit transitions to 0 while in Operation enabled or Switched
On states (+Vmot input is not present), the drive will enter fault state due to undervoltage error. If in a lower state than

switch On, the absence of +Vmot in will not trigger an undervoltage error.

© Technosoft 2019

55 iPOS CANopen Programming

5.2.3 Object 1002n: Manufacturer Status Register

This object is a common status register for manufacturer specific purposes.
Object description:

Index 1002
Name Manufacturer status register
Object code VAR
Data type UNSIGNED32
Entry description:
Access RO
PDO mapping Optional
Value range UNSIGNED32
Default value No

Table 5.2.5 — Bit Assignment in Manufacturer Status Register

Bit Value Description
31 1 Drive/motor in fault status
30 1 Reference position in absolute electronic camming mode reached
29 1 Reserved
28 1 Gear ratio in electronic gearing mode reached
27 1 Drive 12t protection warning level reached
26 1 Motor |2t protection warning level reached
25 1 Target command reached
24 1 Capture event/interrupt triggered
23 1 Limit switch negative event / interrupt triggered
22 1 Limit switch positive event / interrupt triggered
21 1 AUTORUN mode enabled
20 1 Position trigger 4 reached
19 1 Position trigger 3 reached
18 1 Position trigger 2 reached
17 1 Position trigger 1 reached
16 1 Drive/motor initialization performed
15...0 Same as Object 6041n, Statusword

5.24 Object 6060n: Modes of Operation

The object selects the mode of operation of the drive.

Object description:
Index 6060n
Name Modes of Operation
Object code VAR
Data type INTEGERS
Entry description:
Access RW
PDO mapping Yes
Units -
Value range -128 ... 127
Default value No
Data description:
Value Description
-128...-6 Reserved
-5 Manufacturer specific — External Reference Torque Mode
-4 Manufacturer specific — External Reference Speed Mode
-3 Manufacturer specific — External Reference Position Mode
-2 Manufacturer specific — Electronic Camming Position Mode
-1 Manufacturer specific — Electronic Gearing Position Mode
0 Reserved
1 Profile Position Mode
2 Reserved
3 Profile Velocity Mode
4,5 Reserved
6 Homing Mode
7 Interpolated Position Mode
8 Cyclic Synchronous Position Mode (CSP)
© Technosoft 2019 56 iPOS CANopen Programming

1 9...127 Reserved
Remark: The actual mode is reflected in object 6061, (Modes of Operation Display).

5.2.5 Object 6061n: Modes of Operation Display

The object reflects the actual mode of operation set with object Modes of Operation (index 6060n).

If the drive is in an inferior state than Operation enabled and object 6060» Modes of operation is changed, object 6061n
will take the value of 6060k only after the drive reached Operation enabled state.

Object description:
Index 6061h
Name Modes of Operation Display
Object code VAR
Data type INTEGERS
Entry description:
Access RO
PDO mapping Possible
Units -
Value range -128 ... 127
Default value -

Data description: Same as for object 6060n Modes of Operation.

5.3 Limit Switch functionality explained

5.31 Hardware limit switches LSP and LSN functionality

All iPOS drives have two limit switch inputs:

= LSP - positive limit switch
= LSN - negative limit switch

Triggering a limit switch during a motion causes the drive to enter automatically in quick stop active state
(statusword = xxxx xxxx x00x 0111p) where the deceleration value is defined in Object 6085h: Quick stop deceleration.

If during a positive motion LSP is activated, the motor will enter quick stop.
If during a negative motion LSN is activated, the motor will enter quick stop.
If during a positive motion LSN is activated, nothing will happen.

If during a negative motion LSP is activated, nothing will happen.

velocity ,

v, L

quick stop

acceleration deceleration

using 6083h
value

t, t, t ot time

LSP active

Figure 5.3.1. Stopping a motion on the positive limit switch

Figure 5.3.1 depicts a positive motion where the speed increases from t0 until t1 using the acceleration value defined
in Object 6081h: Profile velocity. At moment t2, the positive limit switch is activated and the drive automatically enters
quick stop state where it decelerates using the value defined in Object 6085h: Quick stop deceleration.

While the positive limit switch is active, no new positive motion will be accepted by the drive. Only a negative motion is
accepted while LSP is active.

While the negative limit switch is active, no new negative motion will be accepted by the drive. Only a positive motion is
accepted while LSN is active.

A limit switch can be defined as active while the input is in the low or high state in Drive setup:

|hpLits polarity

Enable] Limit switch+ Limit switch- | Type
Active high [Connected to +Vlag] * o * Sink [PMF)
Active low [Open/Mo connection] {+ - " " Source[NPN]

Figure 5.3.2. Configuring the limit witch active state in Drive setup.

© Technosoft 2019 57 iPOS CANopen Programming

Status word Bit10 (internal limit active) is set when either the Positive or Negative limit switch is active. If the internal
parameter LSACTIVE = 1 or object 60B8h bit 6 = 1, status word bit10 will not be set and the emergency messages for
the active limit switches will be disabled. If the limit switches inputs are disabled, they can be used as regular digital
inputs.

If the positive limit switch is activated, the emergency error code 0x5443 will be sent automatically and object 2000h bit
6 will be 1.

If the negative limit switch is activated, the emergency error code 0x5442 will be sent automatically and object 2000h
bit 7 will be 1.

When a limit switch becomes inactive, the emergency error code 0x0000 will be sent automatically and object 2000h bit
6 or 7 will return to O.

All iPOS drives can also use the limit switch inputs in order to capture the motor or load position. This function is
configurable through Object 60B8h: Touch probe function and Object 2104h: Auxiliary encoder function. If the feedback
type is incremental encoder, the position is captured within several ps. If the feedback type is SSI/BiSS/Resolver/Linear
halls or Sin/Cos, the captured position is the latest one computed in the position loop, so by default it may be up to 1
ms old.

5.3.2 Software limit switches functionality

The software limit switches work just like the hardware limit switches (LSP, LSN) in terms of functionality. An individual
position value is chosen for the negative and positive limits and when those values are reached, the drive will quick
stop. A new motion will be accepted only if the motion is opposite the active software or hardware limit switch.

v Softveare limits - restrict mowvement

Megative limit |-2 rat -
Pozitive limit |3 rat -

Figure 5.3.3. Configuring the software limit switches position values in Drive setup.

The software limit switches can also be configured through Object 607Dh: Software position limit.

If the positive software limit switch is activated, the emergency error code 0xFF06 will be sent automatically and object
2002h bit 6 will be 1.

If the negative software limit switch is activated, the emergency error code OxFF07 will be sent automatically and object
2002h bit 7 will be 1.

When a limit switch becomes inactive, the emergency error code 0x0000 will be sent automatically and object 2002h bit
6 or 7 will return to 0.

5.4 Error monitoring

5.4.1 Object 2000n: Motion Error Register

The Motion Error Register displays all the drive possible errors. A bit set to 1 signals that a specific error has occurred.
When the error condition disappears or the error is reset using a Fault Reset command, the corresponding bit is reset
to 0.

The Motion Error Register is continuously checked for changes of the bits status.

Object description:
Index 2000n
Name Motion Error Register
Object code VAR
Data type UNSIGNED16
Entry description:
Access RO
PDO mapping Possible
Units -
Value range 0 ... 65535
Default value 0

© Technosoft 2019 58 iPOS CANopen Programming

Table 5.4.1 — Bit Assignment in Motion Error Register

Bit Description

15 Drive disabled due to enable or STO input. Set when enable or STO input is on disable state. Reset when

enable or STO input is on enable state

14 Command error. This bit is set in several situations. They can be distinguished either by the associated
emergency code, or in conjunction with other bits from the DER (2002) register.

13 Under-voltage. Set when protection is triggered. Reset by a Reset Fault command

12 Over-voltage. Set when protection is triggered. Reset by a Reset Fault command

11 Over temperature drive. Set when protection is triggered. Reset by a Reset Fault command.

10 Over temperature motor. Set when protection is triggered. Reset by a Reset Fault command. This protection

may be activated if the motor has a PTC or NTC temperature contact.

I°T protection. Set when protection is triggered. Reset by a Reset Fault command

Over current. Set when protection is triggered. Reset by a Reset Fault command

Negative limit switch active. Set when LSN input is in active state. Reset when LSN input is inactive state

Positive limit switch active. Set when LSP input is in active state. Reset when LSP input is inactive state

For F514G and newer: Feedback error. Details found in DER2 (2009,) bits. Set when protection is triggered.

Reset by a Reset Fault command.

For F508x/509x; F523x/524x, it represents either digital Hall sensor missing or position wraparound.

Communication error. Set when protection is triggered. Reset by a Reset Fault command

Control error (position/speed error too big). Set when protection is triggered. Reset by a Reset Fault

command

Invalid setup data. Set when the EEPROM stored setup data is not valid or not present.

Short-circuit. Set when protection is triggered. Reset by a Reset Fault command

CAN error. Set when CAN controller is in error mode. Reset by a Reset Fault command

O (N |00(©

[&)]

o= N W (b

5.4.2 Object 2002nh: Detailed Error Register (DER)

The Detailed Error Register displays detailed information about the errors signaled with command Error bit from Motion
Error Register. Not all bits represent errors. This register also displays the status of software limit switches and lock
EEPROM status. A bit set to 1 signals that a specific error has occurred. When the error condition disappears or the
error is reset using a Fault Reset command, the corresponding bit is reset to 0.

Object description:
Index 2002n
Name Detailed Error Register
Object code VAR
Data type UNSIGNED16
Entry description:
Access RO
PDO mapping Possible
Units -
Value range 0 ... 65535
Default value 0

Table 5.4.2 — Bit Assignment in Detailed Error Register

Bit Description

15 EEPROM Locked; an attempt to write in the EEPROM will be ignored.

14 STO or Enable circuit hardware error

13 Self-check error; Internal memory (OTP) checksum error

12 reserved

11 Start mode failed; Motionless start or pole lock minimum movement failed

10 Encoder broken wire; On a brushless motor, either the digital halls or the incremental
encoder signal was interrupted

Update ignored for S-curve

S-curve parameters caused an invalid profile. UPD instruction was ignored.

Negative software limit switch is active.

Positive software limit switch is active.

Cancelable call instruction received while another cancelable function was active.

UPD instruction received while AXISON was executed. The UPD instruction was ignored

and it must be sent again when AXISON is completed.

A call to an inexistent function was received.

A call to an inexistent homing routine was received.

A RET/RETI instruction was executed while no function/ISR was active.

The number of nested function calls exceeded the length of TML stack. Last function call

was ignored.

O |=NWw & OO|N|(0|©

© Technosoft 2019 59 iPOS CANopen Programming

5.4.3 Object 2009x: Detailed Error Register 2 (DER2)"

The Detailed Error Register 2 mostly displays detailed information about the errors signaled with command Feedback
error bit 5 from Motion Error Register (2000n). A bit set to 1 signals that a specific error has occurred. When the error
condition disappears or the error is reset using a Fault Reset command, the corresponding bit is reset to 0.

Object description:

Index 2009n
Name Detailed Error Register 2
Object code VAR
Data type UNSIGNED16
Entry description:
Access RO
PDO mapping Possible
Units -
Value range 0 ... 65535
Default value 0

Table 5.4.3 — Bit Assignment in Detailed Error Register 2

Bit Description

15..6 reserved

6 Position wraparound

5 Hall sensor missing; can be either Digital or Linear analogue hall error.

4 Absolute Encoder Interface (AEI) interface error; applies only to iPOS80x0 drives
3 BiSS sensor missing; No BiSS sensor communication detected.
2
1
0

BiSS data error bit is set
BiSS data warning bit is set
BiSS data CRC error

5.4.4 Object 2003n: Communication Error Register (CER)

The Communication Error Register (CER) is a 16-bit status register, containing information about communication errors
on CAN, SPI and SCI communication channels. A bit set to 1 signals that a specific error has occurred. When the error
condition disappears or the error is reset using a Fault Reset command, the corresponding bit is reset to 0.

Object description:

Index 2003n
Name Communication Error Register
Object code VAR
Data type UNSIGNED16
Entry description:
Access RO
PDO mapping Possible
Units -
Value range 0 ... 65535
Default value 0

Table 5.4.4 — Bit Assignment in Communication Error Register

Bit Description

15..8 reserved

7 SPI timeout on write operation
CAN bus off error. It is automatically reset if the drive successfully receives a new message
over CAN.

CAN transmission overrun error
CAN reception overrun error
CAN reception timeout error
RS232 reception timeout error
RS232 transmission timeout error
RS232 reception error

O NWwWh~hog O

' Available only in F514x.

© Technosoft 2019 60 iPOS CANopen Programming

5.4.5 Object 605An: Quick stop option code

This object determines what action should be taken if the quick stop function is executed. The slow down ramp is a
deceleration value set by the Profile acceleration object, index 6083h. The quick stop ramp is a deceleration value set
by the Quick stop deceleration object, index 6085n.

Object description:
Index 605An
Name Quick stop option code
Object code VAR
Data type INTEGER16
Entry description:
Access RW
PDO mapping No
Value range -32768 ... 32767
Default value 2
Data description:
Value Description
-32768...-1 Manufacturer specific
0 Disable drive function
1 Slow down on slow down ramp and transit into Switch On
Disabled
2 Slow down on quick stop ramp and transit into Switch On
Disabled
3 Reserved
4 Reserved
5 Slow down on slow down ramp and stay in Quick Stop
Active
6 Slow down on quick stop ramp and stay in Quick Stop
Active
7...32767 Reserved

5.4.6 Object 605Bh: Shutdown option code

This object determines what action is taken if when there is a transition from Operation Enabled state to Ready to Switch
On state. The slowdown ramp is a deceleration value set by the Profile acceleration object, index 6083n.

Object description:

Index 605Bh
Name Shutdown option code
Object code VAR
Data type INTEGER16
Entry description:
Access RW
PDO mapping No
Value range -32768 ... 32767
Default value 0
Data description:
Value Description
-32768...-1 Manufacturer specific
0 Disable drive function (switch-off the
drive power stage)
1 Slow down on slowdown ramp and
disable the drive function
2...32767 Reserved

© Technosoft 2019 61 iPOS CANopen Programming

5.4.7 Object 605Ch: Disable operation option code

This object determines what action is taken if when there is a transition from Operation Enabled state Switched On
state. The slowdown ramp is a deceleration value set by the Profile acceleration object, index 6083n.

Object description:

Index 605Ch
Name Disable operation option code
Object code VAR
Data type INTEGER16
Entry description:
Access RW
PDO mapping No
Value range -32768 ... 32767
Default value 1
Data description:
Value Description
-32768...-1 Manufacturer specific
0 Disable drive function (switch-off the
drive power stage)
1 Slow down on slow down ramp and
disable the drive function
2...32767 Reserved

5.4.8 Object 605Dn: Halt option code

This object determines what action is taken if when the halt command is executed. The slowdown ramp is a deceleration
value set by Object 6083h: Profile acceleration. The quick stop ramp is a deceleration value set by Object 6085h: Quick

stop deceleration.

Object description:

Index 605Dn

Name Halt option code

Object code VAR

Data type INTEGER16
Entry description:

Access RW

PDO mapping No

Value range -32768 ... 32767

Default value

1

Data description:

Value Description

-32768...-1 Manufacturer specific

0 Reserved

1 Slow down on slow down ramp and
stay in Operation Enabled

2 Slow down on quick stop ramp and
stay in Operation Enabled

3...32767 Reserved

5.4.9 Object 605En: Fault reaction option code

This object determines what action should be taken if a non-fatal error occurs in the drive. The non-fatal errors are by

default the following:
Under-voltage
Over-voltage

12t error —when the internal register ASR bit1 is 0 in setup.

Drive over-temperature
Motor over-temperature

Communication error (when object 60071 option 1 is set)

Object description:
Index 605En
Name Fault reaction option code
Object code VAR
Data type INTEGER16

© Technosoft 2019

iPOS CANopen Programming

Entry description:

Access RW
PDO mapping No
Value range -32768 ... 32767
Default value 2
Data description:
Value Description
-32768...-2 Manufacturer specific
-1 No action
0 Disable drive, motor is free to rotate
1 Reserved
2 Slow down with quick stop ramp
3...32767 Reserved

5.4.10 Object 6007h: Abort connection option code

The object sets the action performed by the drive when one of the following events occurs: bus-off, heartbeat and life
guarding.

Object description:
Index 6007h
Name Abort connection option code
Object code VAR
Data type INTEGER16
Entry description:
Access RW

PDO mapping Yes
Value range -32768...32767

For F514x firmware 1 (fault if communication error)
Default value ~ForF508/509/523 and | 0 (no action if communication
524x firmware error)

Table 5.4.5 — Abort connection option codes values

Option code Description

-32768...-1 Manufacturer specific (reserved)

0 No action

+1 Fault signal - Execute specific fault routine set in Object
605Eh: Fault reaction option code

+2 Disable voltage command

+3 Quick stop command

+4...+32767 Reserved

The default value for this object can be changed by editing the parameter “x6007” found in parameters.cfg of the project
file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

5.5 Digital I/0 control and status objects

5.5.1 Object 60FDn: Digital inputs

The object contains the actual value of the digital inputs available on the drive. Each bit from the object corresponds to
a digital input (manufacturer specific or device profile defined). If a bit is SET, then the status of the corresponding input
is logical ‘1’ (high). If the bit is RESET, then the corresponding drive input status is logical ‘0’ (low).

Remarks:

The device profile defined inputs (limit switches, home input and interlock) are mapped also on the manufacturer specific
inputs. Hence, when one of these inputs changes the status, then both bits change, from the manufacturer specific list
and from the device profile list.

The number of available digital inputs is product dependent. Check the drive user manual for the available digital inputs.

© Technosoft 2019 63 iPOS CANopen Programming

Object description:

Index 60FDn
Name Digital inputs
Object code VAR
Data type UNSIGNED32
Entry description:
Access RO
PDO mapping Possible
Value range UNSIGNED32
Default value 0
Bit Value Description
31 IN15 status
30 IN14 status
29 IN13 status
28 IN12 status
£ 27 IN11 status
8 26 IN10 status
& 25 IN9 status
o 24 IN8 status
2 23 IN7 status
g 22 ING6 status
g 21 IN5 status
S 20 IN4 status
19 IN3 status
18 IN2 status
17 IN1 status
16 INO status
15..4 Reserved
o 0 Interlock (Drive enable/ STO input) activated; drive may
?:’ 3 apply power to motor
g 1 Interlock (Drive enable/ STO input) deactivated; drive may
® not apply power to motor. Enter Switch on disabled state.
% 2 0 Home switch input status is low
S 1 Home switch input status is high
8 1 0 Positive limit switch is inactive
S 1 Positive limit switch is active
a 0 0 Negative limit switch is inactive
1 Negative limit switch is active
5.5.2 Object 208Fn: Digital inputs 8bit

This object has 2x8 bit sub-indexes that show the same data as object 60FDn Digital inputs. Mapping shorter data to a
PDO decreases the total CAN bus load. This is especially helpful when there are many devices in a network and the

data transmission cycle time is low.

Remark:

The number of available digital inputs is product dependent. Check the drive user manual for the available digital inputs.

Object description:
Index 208Fn
Name Digital inputs 8bit
Object code ARRAY
Data type UNSIGNEDS8
Entry description:
Sub-index 0
Description Number of entries
Access RO
PDO mapping No
Value range 1...2
Default value 2
Sub-index 1
Description Device profile defined inputs
Access RO
PDO mapping Possible
Value range UNSIGNEDS8
Default value no

© Technosoft 2019

64

iPOS CANopen Programming

Sub-index 2

Description Manufacturer specific inputs
Access RO

PDO mapping Possible

Value range UNSIGNEDS8

Default value no

Table 5.5.1 — Sub-index 1 bit description

Bit

Value

Description

208Fn:01

4.7

Reserved

Interlock (Drive enable/STO input) activated; drive

may apply power to motor

Interlock (Drive enable/STO input) deactivated; drive
may not apply power to motor. Enter Switch on

disabled state.

Home switch input status is low

Home switch input status is high

Positive limit switch is inactive

Positive limit switch is active

Negative limit switch is inactive

Device profile defined input
N

=IO OO0

Negative limit switch is active

Table 5.5.2 — Sub-index 2 bit description

Bit Value Description
e 7 IN7 status
3 6 IN6 status
73 5 IN5 status
s 4 IN4 status
s %’ 3 IN3 status
Tk S 2 IN2 status
8 = ‘g 1 IN1 status
Nsc 0 INO status

5.5.3

Object 60FEn: Digital outputs

The object controls the digital outputs of the drive. The first sub-index sets the outputs state to high or low if the mask

allows it in the second sub-index, which defines the outputs that can be controlled.

All iPOS drives have NPN type outputs. If an output bit is SET (1), then the corresponding drive output will be switched
to logical ‘1’ (high). The output will disconnect the load from the GND. If the bit is RESET(0), then the corresponding
drive output will be switched to logical ‘0’ (low). The output will connect the load to the GND.

Remarks:

The actual number of available digital outputs is product dependent. Check the drive user manual for the available digital

outputs.

If an unavailable digital output is selected in sub-index 2, the drive will issue an emergency message with ID OxFF05.

Object description:

Entry description:

Index 60FEn

Name Digital outputs
Object code ARRAY

Data type UNSIGNED32
Sub-index 0

Description Number of entries
Access RO

PDO mapping No

Value range 1...2

Default value 2

Sub-index 1

Description Physical outputs
Access RW

© Technosoft 2019

65

iPOS CANopen Programming

PDO mapping Possible
Value range UNSIGNED32
Default value 0

Sub-index 2

Description Bit mask
Access RW

PDO mapping Possible
Value range UNSIGNED32
Default value 0

Table 5.5.3 — Bit mask description

Bit Description
31 OUT15 command
30 OUT14 command
29 OUT13 command
28 OUT12 command
£ 27 OUT11 command
§ 26 OUT10 command
n 25 OUT9 command
o 24 OUT8 command
g 23 OUT7 command
K 22 OUT6 command
% 21 OUT5 command
s 20 OUT4 command
19 OUT3 command
18 OUT2 command
17 OUT1 command
16 OUTO0 command
(0]
°3
3 s 15.. Reserved
o o
Sya]
a

5.5.3.1 Example for setting the digital outputs

The example will Set OUTO to 0(connect to GND) and OUT1 to 1 (disconnect from GND).

1. Set sub-index 1 with the needed outputs states. Set bit 16 (OUTO) to 0 and bit17 (OUT1) to 1.
Set in 60FEn sub-index1 to 0x00020000.

2. Set sub-index 2 bit mask only with the output values that need to be changed. Set bit 16 and 17 to 1 to
allow the change of OUTO and OUT1 states.

Set in 60FEn sub-index2 to 0x00030000.
After the second sub-index is set, the selected outputs will switch their state to the values defined in sub-index 1.

5.5.4 Object 2090n: Digital outputs 8bit

Has the same functionality as object 60FEn digital outputs, only that its two sub-indexes are 8 bit instead of 32bit.
Mapping shorter data to a PDO decreases the total CAN bus load. This is especially helpful when there are many
devices in a network and the data transmission cycle time is low.

Object description:

Entry description:

Index 2090n

Name Digital outputs 8bit
Object code ARRAY

Data type UNSIGNEDS8
Sub-index 0

Description Number of entries
Access RO

PDO mapping No

Value range 1...2

Default value 2

© Technosoft 2019

66

iPOS CANopen Programming

5.5.5 Object 2045n: Digital outputs status

Sub-index 1
Description Physical outputs 8bit
Access RW
PDO mapping Possible
Value range UNSIGNEDS8
Default value 0
Sub-index 2
Description Bit mask 8bit
Access RW
PDO mapping Possible
Value range UNSIGNEDS8
Default value 0
Table 5.5.4 — Sub-index 1&2 Bit description
Bit Description
7 OUT7 command
6 OUT6 command
% 5 OUT5 command
g2 4 OUT4 command
20 3 OUT3 command
S 2 OUT2 command
% 8 1 OUT1 command
=5 0 OUTO0 command

The actual status of the drive outputs can be monitored using this object.

Object description:
Index 2045n
Name Digital outputs status
Object code VAR
Data type UNSIGNED16
Entry description:
Access RO
PDO mapping Possible
Units -
Value range UNSIGNED16
Default value No
Data description:
Bit Meaning Bit Meaning
15 OUT15 status 7 OUTY7 status
14 OUT 14 status 6 OUT6 status
13 OUT13 status 5 OUTS5 status
12 OUT12 status 4 OUT4 status
11 OUT11 status 3 OUTS3 status
10 OUT10 status 2 OUT2 status
9 OUT9 status 1 OUT1 status
8 OUTS status 0 OUTO status

If the any of the bits is SET, then the corresponding drive output status is logical ‘1’ (high). If the bit is RESET, then the
corresponding drive output status is logical ‘0’ (low).

5.5.6 Object 2102n: Brake status

In Motor Setup, one digital output can be assigned as a brake output. The output will be SET or RESET when the motor
PWM power is turned OFF or ON.

This object will show 1 when the brake output is active and 0 when not.
Object description:

Index 2102n
Name Brake status
Object code VAR
Data type USINT8
Entry description:
© Technosoft 2019 67 iPOS CANopen Programming

Access RO
PDO mapping Possible
Units -

Value range Oor1
Default value No

5.5.7 Object 2046n: Analogue input: Reference

The object contains the actual value of the analog reference applied to the drive. Through this object, one can supervise
the analogue input dedicated to receive the analogue reference in the external control modes.

Object description:
Index 2046n
Name Analogue input: Reference
Object code VAR
Data type UNSIGNED16
Entry description:
Access RO
PDO mapping Possible
Units -
Value range 0 ... 65520
Default value No

5.5.8 Object 2047h: Analogue input: Feedback

The object contains the actual value of the analogue feedback applied to the drive.

Object description:
Index 2047
Name Analogue input: Feedback
Object code VAR
Data type UNSIGNED16
Entry description:
Access RO
PDO mapping Possible
Units -
Value range 0 ... 65520
Default value No

5.5.9 Object 2055n: DC-link voltage

The object contains the actual value of the DC-link voltage. The object is expressed in internal voltage units.
Object description:

Index 2055n
Name Analogue input: DC-link voltage
Object code VAR
Data type UNSIGNED16
Entry description:
Access RO
PDO mapping Possible
Units DC-VU
Value range 0 ... 65520
Default value No

The computation formula for the voltage [IU] in [V] is:
VDCMaxMeasurable[V]
65520

where VDCMaxMeasurable is the maximum measurable DC voltage expressed in [V]. You can read this value in the
“Drive Info” dialogue, which can be opened from the “Drive Setup”.

Voltage _measured[V] = -Voltage _measured[IU]

© Technosoft 2019 68 iPOS CANopen Programming

5.5.10 Object 2058h: Drive Temperature

The object contains the actual drive temperature. The object is expressed in temperature internal units.
Object description:

Index 2058h
Name Analogue input for drive temperature
Object code VAR
Data type UNSIGNED16
Entry description:
Access RO
PDO mapping Possible
Units -
Value range 0 ... 65535
Default value No

Note: if the drive does not have a temperature sensor, this object should not be used.

The computation formula for the temperature [IU] in [°C] is:

Temp[°C]=

3.3

DriveTemp SensorGain * 65520
where DriveTempSensorGain and Drive TempOutAtOoC can be found as Sensor gain and Output at 0 °C in the “Drive

*(Temp [IU]-

DriveTemp OutAt0oC* 65520

3.3

Info” dialogue, which can be opened from the “Drive Setup”.

5.5.11 Object 2108n: Filter variable 16bit

This object applies a first order low pass filer on a 16 bit variable value. It does not affect the motor control when applied.

It can be used only for sampling filtered values of one variable like the motor current.

Object description:

Entry description:

How it works:

Index 2108n

Name Filter variable 16bit
Object code Record

Data type Filter variable record
Sub-index 0

Description Number of entries
Access RO

PDO mapping No

Value range 3

Default value 3

Sub-index 1

Description 16 bit variable address
Access RW

PDO mapping Possible

Value range UNSIGNED16

Default value

0x0230 (address. or motor current)

Sub-index 2

Description Filter strength
Access RW

PDO mapping Possible
Value range UNSIGNED16
Default value 50

Sub-index 3

Description Filtered variable 16bit
Access RO

PDO mapping Possible
Value range 0-32767

Default value

© Technosoft 2019

69

iPOS CANopen Programming

Sub-index 1 sets the filtered variable address. To find a variable address, in EasySetup or Easy Motion Studio, click
View/ Command Interpreter. The communication must be online with the drive. Write the desired variable name with a
? in front and press Enter.

Command Interpreter
F}’_Lb- ?motor_current

40TOR_CURRENT = 0 (0x0000)
TML>
The variable address can be found between the parenthesis.

Sub-index 2 sets the filter strength. The filter is strongest when Sub-index 2 = 0 and weakest when it is 32767. A strong
filter increases the time lag between the unfiltered variable change and the filtered value reaching that value.

Sub-index 3 shows the filtered value of the 16 bit variable whose address is declared in Sub-index 1.

5.6 Protections Setting Objects

5.6.1 Object 607Dn: Software position limit

The object sets the maximal and minimal software position limits. If the actual position is lower than the negative position
limit or higher than the positive one, a software position limit emergency message will be launched. If either of these
limits is passed, the motor will start decelerating using the value set in Object 6085h: Quick stop deceleration. Once it
has decelerated, the motor will stand still until a new command is given to travel within the space defined by the limits.

Remarks:

A value of -2147483648 for Minimal position limit and 2147483647 for Maximal position limit disables the position limit
check.

Object description:
Index 607Dn
Name Software position limit
Object code ARRAY
Data type INTEGER32
Entry description:
Sub-index 0
Description Number of entries
Access RO
PDO mapping No
Value range 2
Default value 2
Sub-index 1
Description Minimal position limit
Access RW
PDO mapping Possible
Value range INTEGER32
Default value 0x80000000
Sub-index 2
Description Maximal position limit
Access RW
PDO mapping Possible
Value range INTEGER32
Default value Ox7FFFFFFF

5.6.2 Object 2050n: Over-current protection level

The Over-Current Protection Level object together with object Over-Current Time Out (20511) defines the drive over-
current protection limits. The object defines the value of current in the drive, over which the over-current protection will
be activated, if lasting more than a time interval that is specified in object 2051+. It is set in current internal units.

Object description:

Index 2050n

Name Over-current protection level
Object code VAR

Data type UNSIGNED16

© Technosoft 2019 70 iPOS CANopen Programming

Entry description:

Access RW
PDO mapping No
Units CuU
Value range 0...32767
Default value No

The computation formula for the current [IU] in [A] is:
2 - Ipeak
65520

where Ipeak is the peak current supported by the drive and current[IU] is the command value for object 2050n.

current[A] = -curent[1U]

5.6.3 Object 2051h: Over-current time out

The Over-Current time out object together with object Over-Current Protection Limit (2050n) defines the drive over-
current protection limits. The object sets the time interval after which the over-current protection is triggered if the drive
current exceeds the value set through object 2050n. It is set in time internal units.

Object description:

Index 2051n
Name Over-current time out
Object code VAR
Data type UNSIGNED16
Entry description:
Access RW
PDO mapping Possible
Units TU
Value range 0 ... 65535
Default value No

5.6.4 Object 2052n: Motor nominal current

The object sets the maximum motor current RMS value for continuous operation. This value is used by the 12t motor
protection and one of the start methods. It is set in current internal units. See object 2053 for more details about the 12t
motor protection.

Object description:

Index 2052
Name Motor nominal current
Object code VAR
Data type UNSIGNED16
Entry description:
Access RW
PDO mapping No
Units CuU
Value range 0...32767
Default value No

The computation formula for the current [IU] in [A] is:
2 - Ipeak
65520

where Ipeak is the peak current supported by the drive and current[IU] is the read value from object 2052n.

current[A] = -curent[1U]

5.6.5 Object 2053n: 12t protection integrator limit

Objects 2053n and 2054h contain the parameters of the 12t protection (against long-term motor over-currents). Their
setting must be coordinated with the setting of the object 2052,, motor nominal current. Select a point on the 12t motor
thermal protection curve, which is characterized by the points I_I2t (current, [A]) and t_I2t: (time, [s]) (see Figure 5.6.1)

© Technosoft 2019 7 iPOS CANopen Programming

Ipeak'“"

|12t

Si2t

Figure 5.6.1./12t moto

t 12t

r thermal protection curve

The points |_I2t and t_I2t on the motor thermal protection curve together with the nominal motor current In define the
surface Sit. If the motor instantaneous current is greater than the nominal current In and the 12t protection is activated,
the difference between the square of the instantaneous current and the square of the nominal current is integrated and
compared with the SI2t value (see Figure 5.6.2). When the integral equals the SI2t surface, the 12t protection is

triggered.
Object description:
Index 2053n
Name 12t protection integrator limit
Object code VAR
Data type UNSIGNED32
Entry description:
Access RW
PDO mapping No
Units -
Value range 0...2%1
Default value No
Current
In
I I
I I
I I I
I I I
I I I
I I I
J@-n7yat : L >
I I I
I | I
I I I
N 1 1 1
I I I
Siat : : :
I I I
I | I
I I I
I I I
I I
N ,

Figure 5.6.2. |2t protection implementation

The computation formula for the i2t protection integrator |
2 1y2
eTINTLIM= (=2 —00)7 26
32767
where |_I2t and In are represented in current units (CU).

5.6.6 Object 2054n: 12t protection scaling factor

imit (12TINTLIM) is

Object description:

Index 2054
Name 12t protection scaling factor
Object code VAR
Data type UNSIGNED16
© Technosoft 2019 72 iPOS CANopen Programming

Entry description:

Access RW

PDO mapping No

Units -

Value range 0...65535
Default value No

The computation formula for the i2t protection scaling factor (SFI2T) is
226 TS_S
t_12t

where Ts_S is the sampling time of the speed control loop [s], and t_I2t is the 12t protection time corresponding to the
point on the graphic in Figure 5.6.1.

SFI2T =

5.6.7 Object 207Fn: Current limit

The object defines the maximum current that will pass through the motor. This object is valid only for the configurations
using: brushless, DC brushed and stepper closed loop motor. The value is set in current internal units.

Object description:

Index 207Fn

Name Current limit

Object code VAR

Data type Unsigned16
Entry description:

Access RW

PDO mapping YES

Units -

Value range 0 ... 65535

Default value No

The computation formula for the current_limit [A] to [IU] is:
Current_ Limit[A]- 65520
2- Ipeak

where Ipeak is the peak current supported by the drive, Current_Limit[A] is the target currentin [A] and Current_Limit[IU]
is the target value to be written in object 207E.

Current _ Limit[IU]=32767 —

5.7 Step Loss Detection for Stepper Open Loop configuration

By using a stepper open loop configuration, the command resolution can be greater than the one used for a normal
closed loop configuration. For example if a motor has 200 steps/ revolution and 256 microsteps / step, results in 51200
Internal Units/ revolution position command. If a 1000 lines quadrature encoder is used, it means it will report 4000
Internal Units/ revolution.

By using the step loss detection, means using a stepper in open loop configuration and an encoder to detect lost steps.
When the protection triggers, the drive enters Fault state signaling a Control error. To enable the protection, a stepper
open loop + encoder on motor must be selected along with a correct Control error protection value.

5.71 Object 2083n: Encoder Resolution for step loss protection

Sets the number of encoder increments for one full motor rotation. For example, if an encoder has 2000
increments/revolution, then 2000 must be written into the object.

Remark: The value for this object is automatically calculated in the setup when choosing a Stepper Open Loop with
feedback on motor configuration.

Object description:

Index 2083n
Encoder resolution for step loss
Name :
protection
Object code VAR
Data type UNSIGNED32

© Technosoft 2019 73 iPOS CANopen Programming

Entry description:

Access RW
PDO mapping Yes
Value range UNSIGNED32

Default value

The value for this object can be changed by editing the parameter “ENCRESLONG” found in parameters.cfg of the

project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

5.7.2

Object 2084n: Stepper Resolution for step loss protection

Sets the number of microsteps the step motor does for one full rotation. For example, if the motor has 100 steps /
revolution (see Figure 5.7.1) and is controlled with 256 microsteps / step (see Figure 5.7.2), the value 100x256=25600
should be found into this object.

Remark: The value for this object is automatically calculated in the setup when choosing a Stepper Open Loop with
feedback on motor configuration.

Object description:

Entry description:

Index 2084n

Name Steppe_r resolution for step loss
protection

Object code VAR

Data type UNSIGNED32

Access RW

PDO mapping Yes

Value range UNSIGNED32

Default value

Step Metor and Load Setup

Guideline assistant

Step 1. Select your mator from a database. If your motor does not exist in any database, proceed through
all the next steps in order to define your motor and sensors data. In either case, use the tests from the nest

steps to verify/detect the motar and sensors parameters and operation

Next
Motor data
N | t
ominal curtent |37 - =] Test Phase Connections
Peak curent |7 4 n -
| Ho. motar steps / rev. [100 |
Torque constant | 0,04 [umia— ~]
Phase resistance [mator + drive) |0.35 Ohmg -
Identify Aesistance and Inductance
Phase inductance [matar + drive) |07 mH hd

Matar inertia

Motor type

Figure

12 kgm*2E-7 | [Motarinertia iz unknown

&+ Biphase Stepper Tri-phase Stepper

5.7.1. Motor steps / revolution

Contral mode Extemal reference
oK
@ Foion [o |
" No % Yes Setup c |

" Spesd Ance

P Anslogue " Incrementsl Encadsr Help

Advanced [Automatically activated after Power On Motor

Auis 1D selection

Drive Info W Set # change asis 1D [HAW hd 5etup
Microstepping

MNo. microsteps / step |268

Figure 5.7.2. Motor microsteps / step

The value for this object can be changed by editing the parameter “STEPRESLONG” found in parameters.cfg of the

project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

© Technosoft 2019

74

iPOS CANopen Programming

5.7.3 Enabling step loss detection protection

Before enabling the step loss detection protection, the Encoder resolution in object 2083 and the Stepper resolution in
object 20841 must be set correctly. These two objects should already be set automatically if the correct setup parameters
were introduced. In addition, the feedback sensor must be set on motor in Motor Setup:

Step Motor and Load Setup @
Guideling assistant Database =
Step 1. Select your motor from a database. If your motar does not exist in any database, proceed through = [Escep -] Drive
all the: next steps in order to define your mator and sensors data. In aither case, use the tests from the next
steps to verify/detect the mater and sensors parameters and operation. Motar
New [Fssz_a58_0.7_57 ~| |Setup
- Save to User Database | Delete ‘ Help ‘ Cancel
Motor data totor brake
Nominal curent |3.7 -
* Test Phase Connections
Peak curent [7.4 n - I~ Matar brake on output fine :
Mo. matar steps £ 1ev. {100
outo
Toque canstant [006 [Nms =]
Phase resistance (mator + drive) |0.35 Ohrng =2
. Identify Resistance and Inductance
Phase inductance [mator + drive] [0.7 mH -
" L b B
Motor tpe: & Biphass Stepper (Triphass Stepper e | Drive active -
Brake applied Erake released H
Conlral type e e
Control type * Openloop | © Closed loop
Maotor sensars - used only for step loss detection
Type | Incremental Encoder ~| | Connectar [Feedback 1 - [o [ws =] [[me =]
Encoder resalution 500 lines ~| Test Connectians ‘ Detect Encadar Resalution ‘

Figure 5.7.3. Configuring the feedback sensor for step loss detection

The step loss detection protection parameters are actually the control error parameters: object 6066, - Following error
time and object 6065 - Following error window. The protection is triggered if the error between the commanded position
and the position measured via the encoder is greater than the value set in object 6065 for a time interval greater than
the value set in object 6066n.

The following error window is expressed in microsteps. The Following error time is expressed in multiples of
position/speed control loops (1ms by default for stepper configurations).

To enable the step loss detection protection, set first the Following error window in object 6056n, then set the Following
error time in object 6066n to a value different from 65535 (OxFFFF). To disable this protection, set a 65535 value in
object 6066h.

Example: Following error window is set to 1000 and Following error time is set to 20. The step motor has 100 steps/rev
and is controlled with 256 microsteps/step. The step loss protection will be triggered if the difference between the
commanded position and the measured position is bigger than 1000 microsteps (i.e. 1000/(100*256) rev = 14,06
degrees) for a time interval bigger or equal than 20 control loops of 1ms each i.e. 20ms.

Remark: the actual value of the error between the commanded position and the measured position can be read from
object 60F4h. It is expressed in microsteps.

5.74 Step loss protection setup

The following steps are recommended for optimal setup of the step loss protection parameters:
Move your motor with the highest velocity and load planned to be used in your application

During the movement at maximal speed, read object 60F4n - Following error actual value as often as possible to
determine its highest value.

Remark: Following error actual value can be read at every control loop using EasyMotion Studio or Easy Setup
by logging the TML variable POSERR.

Add a margin of about 25% to the highest error value determined at previous step and set the new obtained value into
object 6065n - Following error window.

Activate the step loss detection by writing a non-zero value in object 6066n - Following error time out. Recommended
values are between 1 and 10.

5.7.5 Recovering from step loss detection fault

When the step loss detection protection is triggered, the drive enters in Fault state. The CANopen master will receive
an emergency message from the drive with control error/following error code. In order to exit from Fault state and restart
a motion, the following steps must be performed:

e Send fault reset command to the drive. The drive will enter in Switch On Disabled state;
e Send Disable voltage command into Controlword.
e Send Switch On command into Controlword.

e Send Enable operation into Controlword. At this moment, voltage is applied to the motor and it will execute the
phase alignment procedure again. The position error will be reset automatically.

e Start a homing procedure to find again the motor zero position.

© Technosoft 2019 75 iPOS CANopen Programming

5.7.6 Remarks about Factor Group settings when using step the loss detection

When the drive controls stepper motors in open loop, if the factor group settings are activated they are automatically
configured for correspondence between motor position in user units and microsteps as internal units. Because the motor
position is read in encoder counts, it leads to incorrect values reported in objects 6064 Position actual value and 6062n
Position demand value.

Only object 6063n Position actual internal value will always show the motor position correctly in encoder counts.

If the factor group settings are not used, i.e. all values reported are in internal units (default), both 6064n Position actual
value and 6062n Position demand value will provide correct values.

5.8 Drive info objects

5.8.1 Object 1000n: Device Type

The object contains information about drive type and its functionality. The 32-bit value contains 2 components of 16-
bits: the 16 LSB describe the CiA standard that is followed.

Object description:
Index 1000n
Name Device type
Object code VAR
Data type UNSIGNED32
Value description:
Access RO
PDO mapping NO
Value range UNSIGNED32
Default value 60192 for iPOS family

5.8.2 Object 6502n: Supported drive modes

This object gives an overview of the operating modes supported on the Technosoft drives. Each bit from the object has
assigned an operating mode. If the bit is set then the drive supports the associated operating mode.

Object description:

Index 6502n
Name Supported drive modes
Object code VAR
Data type UNSIGNED32
Entry description:
Access RO
PDO mapping Possible
Value range UNSIGNED32
Default value 001F0065n for iPOS family

The modes of operation supported by the Technosoft drives, and their corresponding bits, are the following:
Data description:

MSB LSB
0 0 x x 0 0 1 1 0 0 1 0 1
Manufacturer specific rsvd ip hm rsvd tg pv vl pp
31 21 20 . 16 15 .. T 6 5 4 3 2 1 0

Data description — manufacturer specific:

Bit Description

31...21 Reserved

20 External Reference Torque Mode
19 External Reference Speed Mode
18 External Reference Position Mode
17 Electronic Gearing Position Mode
16 Electronic Camming Position Mode

© Technosoft 2019 76 iPOS CANopen Programming

5.8.3 Object 1008n: Manufacturer Device Name

The object contains the manufacturer device name in ASCII form, maximum 15 characters.
Object description:

Index 1008h
Name Manufacturer device name
Object code VAR
Data type Visible String
Entry description:
Access Const
PDO mapping No
Value range No
Default value iPOS

5.8.4 Object 100An: Manufacturer Software Version

The object contains the firmware version programmed on the drive in ASCIl form with the maximum length of 15
characters.

Object description:
Index 100An
Name Manufacturer software version
Object code VAR
Data type Visible String
Entry description:
Access Const
PDO mapping No
Value range No
Default value Product dependent

5.8.5 Object 2060n: Software version of a TML application

By inspecting this object, the user can find out the software version of the TML application (drive setup plus motion
setup and eventually cam tables) that is stored in the EEPROM memory of the drive. The object shows a string of the
first 4 elements written in the TML application field, grouped in a 32-bit variable. If more character are written, only the
first 4 will be displayed. Each byte represents an ASCII character.

Drive info =3
Inteligent diive name | - Froduct ID EZROM size Fimuare 1D
Possss My Cen | | [FazmaaEiol | |[iE Kwords | | [F574E —

ance

Drive data Protections

Power supply (motor] — min. value "H— W 2
max. value |57 W Trigger if power supply » |53 \a -
=

Logic supply riin, valis [3 v
max vale [41 |V Triggerif power supply < [3.3337 v =
W

4

4

4|4

Morminal current E) n =
T R Support ower cunent [10 &)
Masimum messursble D voltage [123 [V =] || [z fre o
Analogue inputs range R Trigger i T T2mas [105002 [T -]
F Sensor gain ’Tm Application 1D
Output at 0T [05 [« =] | 2
Object description:
Index 2060n
Name Software version of TML application
Object code VAR
Data type UNSIGNED32
Entry description:
Access RO
PDO mapping No
Units -
Value range No
Default value No
Example:

If object 2060n contains the value 0x322E3156, then the software version of the TML application is read as:
0x56 — ASCII code of letter V

© Technosoft 2019 77 iPOS CANopen Programming

0x31 — ASCII code of number 1

0x2E — ASCII code of character . (point)
0x32 — ASCII code of number 2
Therefore, the version is V1.2.

5.8.6

Object 1018h: Identity Object

This object provides general information about the device.
Sub-index 01n shows the unique Vendor ID allocated to Technosoft (1A3h).

Sub-index 02h contains the Technosoft drive product ID. It can be found physically on the drive label or in Drive Setup/
Drive info button under the field product ID. If the Technosoft product ID is P027.214.E121, sub-index 02n will be read
as the number 27214121 in decimal.

Sub-index 03n shows the Revision number.
Sub-index 04n shows the drives Serial number. For example the number 0x4C451158 will be 0x4C (ASCII L); 0x45

(ASCII E); 0x1158 --> the serial number will be LE1158.

Object description:

Entry description:

Index 1018n

Name Identity Object
Object code RECORD
Data type Identity
Sub-index 00n
Description Number of entries
Access RO

PDO mapping No

Value range 1.4

Default value 1

Sub-index 01n
Description Vendor ID
Access RO

PDO mapping No

Value range UNSIGNED32
Default value 000001A3n
Sub-index 02n
Description Product Code
Access RO

PDO mapping No

Value range UNSIGNED32

Default value

Product dependent

Sub-index 03h

Description Revision number
Access RO

PDO mapping No

Value range UNSIGNED32

Default value

0x30313030 (ASCII 0100)

Sub-index 04n
Description Serial number
Access RO
PDO mapping No
Value range UNSIGNED32

Default value

Unique number

© Technosoft 2019

78

iPOS CANopen Programming

5.9 Miscellaneous Objects

5.9.1 Object 2025nx: Stepper current in open-loop operation

In this object, one can set the level of the current to be applied when controlling a stepper motor in open loop operation
at runtime.

Object description:

Index 2025n

Name Steppgr current in open-loop

operation

Object code VAR

Data type INTEGER16
Entry description:

Access RW

PDO mapping Possible

Units U

Value range -32768 ... 32767

Default value No

The computation formula for the current [IU] in [A] is:
2 - Ipeak
65520

where Ipeak is the peak current supported by the drive and current[IU] is the commanded value in object 2025n.

current[A] = -curent[1U]

5.9.2 Object 2026n: Stand-by current for stepper in open-loop operation

In this object, one can set the level of the current to be applied when controlling a stepper motor in open loop operation
in stand-by.

Object description:
Index 2026n
Name Stand-by CL_lrrent for stepper in open-
loop operation
Object code VAR
Data type INTEGER16
Entry description:
Access RW
PDO mapping Possible
Units Cu
Value range -32768 ... 32767
Default value No

5.9.3 Object 2027n: Timeout for stepper stand-by current

In this object, one can set the amount of time after the value set in object 2026n, stand-by current for stepper in open-
loop operation will activate as the reference for the current applied to the motor after the reference has reached the
target value.

Object description:
Index 2027n
Name Timeout for stepper stand-by current
Object code VAR
Data type UNSIGNED16
Entry description:
Access RW
PDO mapping Possible
Units TU
Value range 0 ... 65535
Default value No

© Technosoft 2019 79 iPOS CANopen Programming

5.9.4 Object 2075n: Position triggers

This object is used in order to define a set of four position values whose proximity will be signaled through bits 17-20 of
object 1002n, Manufacturer Status Register. If the position actual value is over a certain value set as a position trigger,
then the corresponding bit in Manufacturer Status Register will be set.

Object description:
Index 2075n
Name Position triggers
Object code ARRAY
Data type INTEGER32

Entry description:
Sub-index 00n
Description Number of sub-indexes
Access RO
PDO mapping No
Default value 4
Sub-index 01h — 04n
Description Position trigger 1 - 4
Access RW
PDO mapping Possible
Value range INTEGER32
Default value No

5.9.5 Object 2085h: Position triggered outputs

The object controls the digital outputs 0, 1 and 5 in concordance with the position triggers 1, 2 and 4 status from the
object 1002n Manufacturer Status Register.

Object description:
Index 2085n
Name Position triggered outputs
Object code VAR
Data type UNSIGNED16
Entry description:
Access RW
PDO mapping No
Units -
Value range 0 ... 65535
Default value No

The Position triggered outputs object has the following bit assignment:

Table 5.9.1 — Bit Assignment in Position triggered outputs

Bit Value Meaning

12-15 0 Reserved.
0 OUTS5 = 1 when Position trigger 4 = 0
OUTS5 = 0 when Position trigger 4 = 1
1 OUTS5 = 0 when Position trigger 4 = 0
OUTS5 = 1 when Position trigger 4 = 1

10 0 Reserved.
OUT1 = 1 when Position trigger 2 =0

11

o v OUT1 = 0 when Position trigger 2 = 1
1 OUT1 = 0 when Position trigger 2 =0

OUT1 = 1 when Position trigger 2 = 1

0 OUTO = 1 when Position trigger 1 =0

8 OUTO = 0 when Position trigger 1 = 1
1 OUTO = 0 when Position trigger 1 =0

OUTO = 1 when Position trigger 1 = 1

4-7 0 Reserved
1 Enable position trigger 4 control of OUT5

© Technosoft 2019 80 iPOS CANopen Programming

31 0 Disable position trigger 4 control of OUT5

2 0 Reserved

1 1 Enable position trigger 2 control of OUT1
0 Disable position trigger 2 control of OUT1

0 1 Enable position trigger 1 control of OUTO
0 Disable position trigger 1 control of OUTO

Note: Some drives may not have some outputs available. The object will control only the ones that exist.

5.9.6 Object 2076n: Save current configuration

This object is used in order to enable saving the current configuration of the operating parameters of the drive. These
parameters are the ones that are set when doing the setup of the drive. The purpose of this object is to be able to save
the new values of these parameters in order to be re-initialized at subsequent system re-starts.

Writing any value in this object will trigger the save in the non-volatile EEPROM memory of the current drive operating
parameters.

Object description:
Index 2076n
Name Save current configuration
Object code VAR
Data type UNSIGNED16
Entry description:
Access 6]
PDO mapping No
Value range UNSIGNED16
Default value -

5.9.7 Object 208Bh?: Sin AD signal from Sin/Cos encoder

The object contains the actual value of the analogue sine signal of a Sin/Cos encoder.

Object description:
Index 208Bh
Name Sin AD signal from Sin/Cos encoder
Object code VAR
Data type INTEGER16
Entry description:
Access RO
PDO mapping Possible
Units -
Value range -32768 ... 32767
Default value No

5.9.8 Object 208Ch3: Cos AD signal from Sin/Cos encoder

The object contains the actual value of the analogue cosine signal of a Sin/Cos encoder.

Object description:

Index 208Cn
Name Cos AD signal from Sin/Cos encoder
Object code VAR
Data type INTEGER16
Entry description:
Access RO
PDO mapping Possible

' Some outputs may not be available on all drives.
2 Object 208Bh is available only on firmware F514x
3 Object 208Ch is available only on firmware F514x

© Technosoft 2019 81 iPOS CANopen Programming

Units -
Value range -32768 ... 32767
Default value No

5.9.9 Object 208En: Auxiliary Settings Register

This object is used as a configuration register that enables various advanced control options.

Object description:
Index 208En
Name Auxiliary Settings Register
Object code VAR
Data type UNSIGNED16
Entry description:
Access RW
PDO mapping No
Value range UNSIGNED16
Default value 0x0100

Table 5.9.2 — Bit Assignment in Auxiliary Settings Register

Bit Value Description
9-15 0 Reserved.
0 Set interpolation mode compatible with PT and PVT (legacy)
8
1 Set interpolation mode (when 6060=7) as described in the CiA402 standard
4-7 0 Reserved
0 When 6040 bit 14 = 1, at the next update’, the Target Speed Starting Value is
3 the Actual Speed
1 When 6040 bit 14 = 1, at the next update, the Target Speed Starting Value is
zero.
0-2 0 Reserved.

5.9.10 Object 210Bh: Auxiliary Settings Register2

This object is used as a configuration register that enables various advanced control options. The bits in this object are
linked to the internal register ASR2.

Object description:
Index 210Bn
Name Auxiliary Settings Register2
Object code VAR
Data type UNSIGNED16
Entry description:
Access RW
PDO mapping No
Value range UNSIGNED16
Default value 0x0000

" update can mean a 0 to 1 transition of bit4 in Controlword or setting a new value into object 60FFn while in velocity
mode

© Technosoft 2019 82 iPOS CANopen Programming

Table 5.9.3 — Bit Assignment in Auxiliary Settings Register2

Bit Value Description
13-15 0 Reserved.
0 Set actual position to the value of the homing offset 607Ch at the end of the
12 homing procedure
1 After finishing a homing procedure, do not reset the actual position.
Homing ends keeping position on home switch.
0-11 0 Reserved

5.9.11

Object 2100n: Number of steps per revolution

This object shows the number of motor steps per revolution in case a stepper motor is used. This number is defined
automatically in Motor Setup when configuring the motor data.

Object description:

Entry description:

Index 2100n

Name Number of steps per revolution
Object code VAR

Data type INTEGER16

Access RO

PDO mapping Yes

Value range INTEGER16

Default value -

5.9.12 Object 2101n: Number of microsteps per step

This object shows the number of motor microsteps per step in case a stepper open loop configuration is used. This
number is defined automatically when configuring Drive Setup.

Object description:

Entry description:

Index 2101n

Name Number of microsteps per step
Object code VAR

Data type INTEGER16

Access RO

PDO mapping Yes

Value range INTEGER16

Default value -

5.9.13 Object 2103n: Number of encoder counts per revolution

This object shows the number of encoder counts for one full motor rotation.
For example, if this object indicates 4000 and a 40001U position command is given, the motor will rotate 1 full mechanical

rotation.

Remark: this object will not indicate a correct number in case a Brushed DC motor is used.

Object description:

Entry description:

Index 2103n
Number of encoder counts per
Name f
revolution
Object code VAR
Data type INTEGER32
Access RO
PDO mapping Yes
Value range INTEGER32
Default value -

© Technosoft 2019

83

iPOS CANopen Programming

5.9.14 Object 20914': Lock EEPROM

This object can be used to lock/unlock the EEPROM data from being written. By reading it, it also acts as a status.
Once TML or Setup data is written into the drive memory, it can be protected from being overwritten by using this object.
If the EEPROM memory is already locked, it can be unlocked using this object in order to write new setup data.

Object description:

Entry description:

Index 2091n

Name Lock EEPROM
Object code VAR

Data type UNSIGNEDS8
Access RW

PDO mapping NO

Value range UNSIGNEDS8
Default value 0

Table 5.9.4 — Bit Assignment in Lock EEPROM

Bit Value Meaning
2-7 0 Reserved.
0 0 EEPROM is unlocked.
1 EEPROM is locked.

5.9.15 Object 2092x: User Variables?

This object contains 4x sub-indexes, each a 32bit User Variable. These variables are directly linked to parameters
present in the template and their values can be saved using object 2076n Save current configuration.

The variables are named: UserVar1, UserVar2, UserVar3 and UserVar4. They are linked to sub-index 1 to 4 of this

object.

Object description:

Entry description:

Index 2092n

Name User Variables
Object code ARRAY

Data type ULONG32
Sub-index 00n
Description Number of sub-indexes
Access RO

PDO mapping No

Default value 4

Sub-index 01h — 04n
Description UserVar1 -4
Access RW

PDO mapping Possible
Value range ULONG32
Default value No

" Object 20911 is available only on firmware F514E or newer
2 Object 2092 is available only on firmware F514E or newer

© Technosoft 2019

84

iPOS CANopen Programming

6 Factor group

The iPOS drives family offers the possibility to interchange physical dimensions and sizes into the device internal units.
This chapter describes the factors that are necessary to do the interchanges.

The factors defined in Factor Group set up a relationship between device internal units and physical units. The actual
factors used for scaling are the position factor (object 6093n), the velocity encoder factor (object 6094h), the acceleration
factor (object 6097n) and the time encoder factor (object 2071n). Writing a non-zero value into the respective dimension
index objects validates these factors. The notation index objects are used for status only and can be set by the user
depending on each user-defined value for the factors.

Because the iPOS drives work with Fixed 32 bit numbers (not floating point), some calculation round off errors might
occur when using objects 6093n, 6094n, 6097h and 2071h. If the CANopen master supports handling the scaling
calculations on its side, it is recommended to use them instead of using the “Factor’ scaling objects.

6.1 Factor group objects

6.1.1 Object 607En: Polarity

This object is used to multiply by 1 or -1 position and velocity objects. The object applies only to position profile and
velocity profile modes of operation.

Object description:
Index 607En
Name Polarity
Object code VAR
Data type UNSIGNEDS8
Entry description:
Access RW
PDO mapping Possible
Value range 0..256
Default value 0

The Polarity object has the following bit assignment:

Table 6.1.1 — Bit Assignment in Polarity object

Bit Bit name Value Meaning
7 Position 0 Multiply by 1 the values of objects 607An, 6062h and 6064
polarity
1 Multiply by -1 the values of objects 607 An, 60621 and 6064n
6 Velocity 0 Multiply by 1 the values of objects 60FFh, 606Br and 606Ch
polarity 1 Multiply by -1 the values of objects 60FFx, 606Bnh and 606Ch
5-0 reserved 0 Reserved

The default value for this object can be changed by editing the parameter “POLARITY” found in parameters.cfg of the
project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

6.1.2 Object 6089n: Position notation index

The position notation index is used to define the position into [SI] units. Its purpose if purely informative for CANopen
masters which still use it and has no influence over the actual unit scaling. In the CiA 402 standard, the dimension and
notion index objects have been declared as obsolete. In case a custom position scaling is used, set it to 1 instead of 0.
For position scaling, use Object 6093h: Position factor.

A list of predefined values can be found in the Dimension/Notation Index Table.

© Technosoft 2019 85 iPOS CANopen Programming

Object description:

Index 6089n
Name Position notation index
Object code VAR
Data type INTEGERS
Entry description:
Access RW
PDO mapping Possible
Value range -128 ... 127
Default value 0

6.1.3 Object 608An: Position dimension index

The position dimension index is used to define the position into [SI] units. Its purpose if purely informative for CANopen
masters which still use it and has no influence over the actual unit scaling. In the CiA 402 standard, the dimension and
notion index objects have been declared as obsolete. In case a custom position scaling is used, set it to 1 instead of 0.
For position scaling, use Object 6093h: Position factor.

A list of predefined values can be found in the Dimension/Notation Index Table.

Object description:
Index 608An
Name Position dimension index
Object code VAR
Data type UNSIGNEDS8
Entry description:
Access RW
PDO mapping Possible
Value range 0...255
Default value 0

6.1.4 Object 608Bn: Velocity notation index

The velocity notation index is used to define the velocity into [SI] units. Its purpose if purely informative for CANopen
masters which still use it and has no influence over the actual unit scaling. In the CiA 402 standard, the dimension and
notion index objects have been declared as obsolete. In case a custom velocity scaling is used, set it to 1 instead of 0.
For velocity scaling, use Object 6094h: Velocity encoder factor.

A list of predefined values can be found in the Dimension/Notation Index Table.

Object description:
Index 608Bh
Name Velocity notation index
Object code VAR
Data type INTEGERS8
Entry description:
Access RW
PDO mapping Possible
Value range -128 ... 127
Default value 0

6.1.5 Object 608Ch: Velocity dimension index

The velocity dimension index is used to define the velocity into [SI] units. Its purpose if purely informative for CANopen
masters which still use it and has no influence over the actual unit scaling. In the CiA 402 standard, the dimension and
notion index objects have been declared as obsolete. In case a custom velocity scaling is used, set it to 1 instead of 0.
For velocity scaling, use Object 6094h: Velocity encoder factor.

A list of predefined values can be found in the Dimension/Notation Index Table.

© Technosoft 2019 86 iPOS CANopen Programming

Object description:

Index 608Cn
Name Velocity dimension index
Object code VAR
Data type UNSIGNEDS8
Entry description:
Access RW
PDO mapping Possible
Value range 0...255
Default value 0

6.1.6 Object 608Dn: Acceleration notation index

The acceleration notation index is used to define the acceleration into [SI] units. Its purpose if purely informative for
CANopen masters which still use it and has no influence over the actual unit scaling. In the CiA 402 standard, the
dimension and notion index objects have been declared as obsolete. In case a custom acceleration scaling is used, set
it to 1 instead of 0. For acceleration scaling, use Object 6097h: Acceleration factor.

A list of predefined values can be found in the Dimension/Notation Index Table.

Object description:

Index 608Dn
Name Acceleration notation index
Object code VAR
Data type INTEGERS8
Entry description:
Access RW
PDO mapping Possible
Value range -128 ... 127
Default value 0

6.1.7 Object 608En: Acceleration dimension index

The acceleration dimension index is used to define the acceleration into [SI] units. Its purpose if purely informative for
CANopen masters which still use it and has no influence over the actual unit scaling. In the CiA 402 standard, the
dimension and notion index objects have been declared as obsolete. In case a custom acceleration scaling is used, set
it to 1 instead of 0. For acceleration scaling, use Object 6097h: Acceleration factor.

A list of predefined values can be found in the Dimension/Notation Index Table.

Object description:
Index 608En
Name Acceleration dimension index
Object code VAR
Data type UNSIGNEDS8
Entry description:
Access RW
PDO mapping Possible
Value range 0...255
Default value 0

6.1.8 Object 206Fn: Time notation index

The time dimension index is used to define the time into [SI] units. Its purpose if purely informative for CANopen masters
which still use it and has no influence over the actual unit scaling. In the CiA 402 standard, the dimension and notion
index objects have been declared as obsolete. In case a custom time scaling is used, set it to 1 instead of 0. For time
scaling, use Object 2071h: Time factor.

Object description:

© Technosoft 2019 87 iPOS CANopen Programming

Index 206Fn
Name Time notation index
Object code VAR
Data type INTEGERS
Entry description:
Access RW
PDO mapping Possible
Value range -128 ... 127
Default value 0

6.1.9 Object 2070n: Time dimension index

The time dimension index is used to define the time into [SI] units. Its purpose if purely informative for CANopen masters
which still use it and has no influence over the actual unit scaling. In the CiA 402 standard, the dimension and notion
index objects have been declared as obsolete. In case a custom time scaling is used, set it to 1 instead of 0. For time
scaling, use Object 207 1h: Time factor.

Object description:
Index 2070n
Name Time dimension index
Object code VAR
Data type UNSIGNEDS8
Entry description:
Access RW
PDO mapping Possible
Value range 0...255
Default value 0

6.1.10 Object 6093h: Position factor

The position factor converts the drive internal position units (increments) to the desired position (in position units) into
the internal format (in increments) for the drive to use.

Writing any non-zero value into the respective dimension and notation index objects activates this object.
PositionFactor.Numerator

Position[IU] = Position[UserUnits] x — —
PositionFactor.Divisor

It scales the following objects:
6064n Position actual value; 6062, Position demand value; 607An Target position; 60671 Position window; 6068

Following error window; 60F4n Following error actual value

Object description:

Entry description:

Index 6093h

Name Position factor
Object code ARRAY
Number of elements 2

Data type UNSIGNED32
Sub-index 01n
Description Numerator
Access RW

PDO mapping Possible
Value range UNSIGNED32
Default value 1

Sub-index 02n
Description Divisor
Access RW

PDO mapping Possible
Value range UNSIGNED32

Default value

1

© Technosoft 2019

88

iPOS CANopen Programming

6.1.10.1 Setting the numerator and divisor in a factor group object. Example

Important: when small values are used, errors may occur due to the internal calculation round off errors. In order to
avoid this, use larger values giving the same desired ratio Example = 6093.1 = 0x20000 and 6093.2 = 0x10000. This
will mean a factor of 2:1. In case 6093.1 = 0x2 and 0x6093.2 = 0x1, the position would not be computed correctly. As a
general rule, the bigger the numerator and denominator values are, the more precise is the fraction calculation.
Example

The desired user position units are radians. The drive internal position units are encoder counts. The load is connected
directly to the motor shaft and the motor has a 500-lines incremental encoder.

The conversion between user and internal units is:

(4x500)

Position[rad] x = Position[UserUnits]
2xx

Hence (6093.2/6093.1) = 2 * pi/ (4 x 500) = 0.0031415926535897932384626433832795...

How to set the 2 numbers? Being a number less than 1, the denominator (6093.1) is bigger than the numerator (6093.2).
Hence set the denominator to the largest integer value for 32 bits i.e. OXFFFF FFFF = 4294967295 and the numerator
to

0.0031415926535897932384626433832795 x 4294967295 = 13493037.701380426305009189410434, rounded to
integer i.e. = 13493038.

In conclusion: 6093.1 = 4294967295 (OxFFFF FFFF) and 6093.2 = 13493038 i.e. user position [rad] * 4294967295 /
13493038 = internal position [counts]

6.1.11 Object 6094n: Velocity encoder factor

The velocity encoder factor converts the desired velocity (in velocity units) into the internal format (in increments) for the

drive to use.

Writing any non-zero value into the respective dimension and notation index objects activates this object.

Velocity [1U] = Velocity [UserUnits] x

VelocityEn coderFactor.Numerator

VelocityEn coderFactor.Divisor

It scales the following objects:
606Ch Velocity actual value; 606Bh Velocity demand value; 606Fh Velocity threshold; 60FFn Target velocity;
60F8h Max slippage; 6081n Profile velocity

To configure the object with optimal values, see Setting the numerator and divisor in a factor group object. Example.

Object description:

Index 6094

Name Velocity encoder factor

Object code ARRAY

Number of elements 2

Data type UNSIGNED32
Entry description:

Sub-index 01n

Description Numerator

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 1

Sub-index 02n

Description Divisor

Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 1

© Technosoft 2019

89

iPOS CANopen Programming

6.1.12 Object 6097n: Acceleration factor

The acceleration factor converts the velocity (in acceleration units/sec?) into the internal format (in increments/sampling?)

for the drive to use.

Writing any non-zero value into the respective dimension and notation index objects activates this object.

Accelerati on[IU] = Accelerati on[UserUnits] x

Accelerati onFactor .Numerator

Accelerati onFactor .Divisor

It scales the following objects:

6083h Profile acceleration; 6085n Quick stop deceleration
To configure the object with optimal values, see Setting the numerator and divisor in a factor group object. Example.

Object description:

Entry description:

Index 6097n

Name Acceleration factor
Object code ARRAY
Number of elements 2

Data type UNSIGNED32
Sub-index 01n
Description Numerator
Access RW

PDO mapping Possible
Value range UNSIGNED32
Default value 1

Sub-index 02n
Description Divisor
Access RW

PDO mapping Possible
Value range UNSIGNED32

Default value

1

6.1.13 Object 2071n: Time factor

The time factor converts the desired time values (in time units) into the internal format (in speed / position loop
samplings) for the drive to use.

Writing any non-zero value into the respective dimension and notation index objects activates this object.

Time[IU] = Time[UserUnits] x

TimeFactor .Numerator
TimeFactor .Divisor

It scales the following objects:
6066n Following error time out; 6068x Position window time; 2023 Jerk time; 2005, Max slippage time out;
2051n Over-current time out

To configure the object with optimal values, see Setting the numerator and divisor in a factor group object. Example.

Object description:

Entry description:

Index 2071n

Name Time factor
Object code ARRAY
Number of elements 2

Data type UNSIGNED32
Sub-index 01n
Description Numerator
Access RW

PDO mapping Possible
Value range UNSIGNED32

Default value

1

© Technosoft 2019

90

iPOS CANopen Programming

Sub-index 02n
Description Divisor
Access RW

PDO mapping Possible
Value range UNSIGNED32
Default value 1

7 Homing Mode

7.1 Overview

Homing is the method by which a drive seeks the home position. There are various methods to achieve this position
using the four available sources for the homing signal: limit switches (negative and positive), home switch (INO) and
encoder index pulse.

Remark: on an iPOS drive or iMOT intelligent motor, the “home switch” is always the digital input INO.

A homing move is started by setting bit 4 of the Controlword object 6040n. The results of a homing operation can be
accessed in the Statusword (index 0x6041).

After the physical home position is found, the drive actual position (object 6064+ or internal variable APOS) will be set
with the value of Object 607Ch: Home offset.

A homing mode is chosen by writing a value to homing method (object 6098h) which will clearly establish:

1. the used homing signal (positive limit switch, negative limit switch, home switch or index pulse)
2. the initial direction of motion
3. the position of the index pulse (if used).

The user can specify the home method, the home offset, two homing speeds and the acceleration.

The home offset (object 607Ch) is the difference between the zero position for the application and the machine home
position. During homing, the home position is found. Once the homing is completed, the zero position is offset from the
home position by adding the home_offset to the home position. This is illustrated in the following diagram.

Home Zero
Position Position

| home_offset ‘l

| 'l

\4

Figure 7.1.1. Home Offset

In other words, after the home position has been found, the drive will set the actual position (object 6064n) with the value
found in object 607 Ch.

There are two homing speeds: a fast speed (which is used for the initial motion to find the home switch), and a slow
speed (which is used after the home switch transition, when the motion is reversed).

The homing acceleration establishes the acceleration to be used for all accelerations and decelerations with the
standard homing modes.

The homing method descriptions in this document are based on those in the Profile for Drives and Motion Control
(CiA402 or IEC61800 Standard).

The figure below explains the homing method 1 diagram in detail. The other homing method diagrams are similar and
the explanation below applied to all of them.

The colors black and grey represent the original homing diagram as explained in the CiA 402 standard.
The green color represents the explanation for the various elements in the diagram.

The purple color represents the motion explanation for the current homing method diagram.

© Technosoft 2019 91 iPOS CANopen Programming

Mechanical Limits

Negative Limit

:,/Switch transition Motor load
! position
Negative direction ' Positive direction
- q _
. .
Initial motion

When limit switch : move negative

is triggered <‘—_’
reverse motion k '

Starting
position

Move positive until
first index pulse transition
after negative limit is inactive

i | Homing number and final home position.
Index Pulse ! ; !

\k Index pulse
Negative Limit Switch+|§— transitions

Figure 7.1.2. Homing method 1 diagram explained

7.2 Homing methods

7.21 Method 1: Homing on the Negative Limit Switch and Index Pulse

If the negative limit switch is inactive (low) the initial direction of movement is leftward (negative sense). After negative
limit switch is reached the motor will reverse the motion, moving in the positive sense with slow speed. The home
position is at the first index pulse to the right of the position where the negative limit switch becomes inactive.

1.] n

— '
Index Pulse —I—I—
Negative Limit Switch_flf—

Figure 7.2.1. Homing on the Negative Limit Switch and Index Pulse

7.2.2 Method 2: Homing on the Positive Limit Switch and Index Pulse

If the positive limit switch is inactive (low) the initial direction of movement is rightward (negative sense). After positive
limit switch is reached the motor will reverse the motion, moving in the negative sense with slow speed. The home
position is at the first index pulse to the left of the position where the positive limit switch becomes inactive.

0 N .

I :) :
—I—!— Index Pulse
_,— Positive Limit Switch

Figure 7.2.2. Homing on the Positive Limit Switch and Index Pulse

7.2.3 Methods 3 and 4: Homing on the Positive Home Switch and Index Pulse.

The home position is at the index pulse either after home switch high-low transition (method 3) or after home switch
low-high transition (method 4).

The diagram shows two initial movements for each type of method. This is because the initial direction of movement is
dependent on the state of the home switch (if low - move positive, if high - move negative).

© Technosoft 2019 92 iPOS CANopen Programming

Index Pulse. | |

Home Switchf

Figure 7.2.3. Homing on the Positive Home Switch and Index Pulse

For method 3, if home input is high the initial direction of movement will be negative, or positive if home input is low,
and reverse (with slow speed) after home input low-high transition. The motor will stop at first index pulse after home
switch high-low transition.
For method 4, if home input is low the initial direction of movement will be positive, or negative if home input is high,
and reverse (with slow speed) after home input high-low transition. The motor will stop at first index pulse after home
switch low-high transition.

In all cases after home switch transition, the speed of the movement is slow.

7.24 Methods 5 and 6: Homing on the Negative Home Switch and Index Pulse.

The home position is at the index pulse either after home switch high-low transition (method 5) or after home switch
low-high transition (method 6).

The initial direction of movement is dependent on the state of the home switch (if high - move positive, if low - move
negative).
In all cases after home switch transition, the speed of the movement is slow.

e o i
—G>

Index Pulse. | |

Home Swwtch—z_l_L—

Figure 7.2.4. Homing on the Negative Home Switch and Index Pulse

For method 5, if home input is high the initial direction of movement will be positive, or negative if home input is low,
and reverse (with slow speed) after home input low-high transition. The motor will stop at first index pulse after home
switch high-low transition.

For method 6, if home input is low the initial direction of movement will be negative, or positive if home input is high,
and reverse (with slow speed) after home input high-low transition. The motor will stop at first index pulse after home
switch low-high transition.

7.2.5 Methods 7 to14: Homing on the Home Switch using limit switches and Index Pulse.

These methods use a home switch that is active over only a portion of the travel distance; in effect the switch has a
‘momentary’ action as the axle’s position sweeps past the switch.

Using methods 7 to 10 the initial direction of movement is to the right (positive), and using methods 11 to 14 the initial
direction of movement is to the left (negative), except the case when the home switch is active at the start of the motion
(initial direction of motion is dependent on the edge being sought — the rising edge or the falling edge).

The home position is at the index pulse on either side of the rising or falling edges of the home switch, as shown in the
following two diagrams.

If the initial direction of movement leads away from the home switch, the drive will reverse on encountering the relevant
limit switch (negative limit switch for methods 7 to 10, or positive limit switch for methods 11 to 14).

© Technosoft 2019 93 iPOS CANopen Programming

I]D--//-- 0

¢@_)

@_>

s @g
L”

Index Pulse |

/L
77/

Home switch 7/

Positive Limit Switch : : vy, : :

T

Y

—

A

Figure 7.2.5. Homing on the Home Switch using limit switches and Index Pulse — Positive Initial Move

Using method 7 the initial move will be positive if home input is low and reverse after home input low-high transition, or
move negative if home input is high. Reverse also if the positive limit switch is reached. Stop at first index pulse after
home switch active region ends (high-low transition). In all cases after high-low home switch transition the motor speed
will be slow.

Using method 8 the initial move will be positive if home input is low, or negative if home input is high and reverse after
home input high-low transition. Reverse also if the positive limit switch is reached. Stop at first index pulse after home
switch active region starts (low-high transition). In all cases after low-high home switch transition the motor speed will
be slow.

Using method 9 the initial move will be positive and reverse (slow speed) after home input high-low transition. Reverse
also if the positive limit switch is reached. Stop at first index pulse after home switch active region starts (low-high
transition).

Using method 10 the initial move will be positive. Reverse if the positive limit switch is reached, then reverse once again
after home input low-high transition. Stop at first index pulse after home switch active region ends (high-low transition).
In all cases after high-low home switch transition the motor speed will be slow.

e a—— [
*@L@ L@‘

— _

Q_> @g

/L
7/

Home switch 7/

e " " / /-
NegativeLimit Switch 7/

\ 4

Index Pulse

Figure 7.2.6. Homing on the Home Switch using limit switches and Index Pulse — Negative Initial Move

Using method 11 the initial move will be negative if home input is low and reverse after home input low-high transition.
Reverse also if the negative limit switch is reached. If home input is high move positive. Stop at first index pulse after
home switch active region ends (high-low transition). In all cases after high-low home switch transition the motor speed
will be slow.

Using method 12 the initial move will be negative if home input is low. If home input is high move positive and reverse
after home input high-low transition. Reverse also if the negative limit switch is reached. Stop at first index pulse after
home switch active region starts (low-high transition). In all cases after low-high home switch transition the motor speed
will be slow.

Using method 13 the initial move will be negative and reverse after home input high-low transition. Reverse also if the
negative limit switch is reached. Stop at first index pulse after home switch active region starts (low-high transition). In
all cases after high-low home switch transition the motor speed will be slow.

Using method 14 the initial move will be negative. Reverse if the negative limit switch is reached, then reverse once
again after home input low-high transition. Stop at first index pulse after home switch active region ends (high-low
transition). In all cases after high-low home switch transition the motor speed will be slow.

Methods 15 and 16: Reserved

© Technosoft 2019 94 iPOS CANopen Programming

7.2.6 Methods 17 to 30: Homing without an Index Pulse

These methods are similar to methods 1 to 14 except that the home position is not dependent on the index pulse but
only on the relevant home or limit switch transitions.

7.2.7 Method 17: Homing on the Negative Limit Switch

Using method 17 if the negative limit switch is inactive (low) the initial direction of movement is leftward (negative
sense). After negative limit switch reached the motor will reverse the motion, moving in the positive sense with slow
speed. The home position is at the right of the position where the negative limit switch becomes inactive.

o i u

Negative Limit Switch _'—

Figure 7.2.7. Homing on the Negative Limit Switch

7.2.8 Method 18: Homing on the Positive Limit Switch

Using method 18 if the positive limit switch is inactive (low) the initial direction of movement is rightward (negative
sense). After positive limit switch reached the motor will reverse the motion, moving in the negative sense with slow
speed. The home position is at the left of the position where the positive limit switch becomes inactive.

n i o
I

_]— Positive Limit Switch

Figure 7.2.8. Homing on the Positive Limit Switch

7.2.9 Methods 19 and 20: Homing on the Positive Home Switch and Index Pulse.

The home position is at the home switch high-low transition (method 19) or low-high transition (method 20).

The diagram shows two initial movements for each type of method. This is because the initial direction of movement is
dependent on the state of the home switch (if low - move positive, if high - move negative).

|:| D . |:|

Home Swilchr

Figure 7.2.9. Homing on the Positive Home Switch

Using method 19, if home input is high, the initial direction of movement will be negative, or positive if home input is
low, and reverse (with slow speed) after home input low-high transition. The motor will stop right after home switch high-
low transition.

Using method 20, if home input is low, the initial direction of movement will be positive, or negative if home input is
high, and reverse (with slow speed) after home input high-low transition. The motor will stop after right home switch low-
high transition.

7.210 Methods 21 and 22: Homing on the Negative Home Switch

The home position is at the home switch high-low transition (method 21) or after home switch low-high transition (method
22).

The initial direction of movement is dependent on the state of the home switch (if high - move positive, if low - move
negative).

In all cases after home switch transition, the speed of the movement is slow.

© Technosoft 2019 95 iPOS CANopen Programming

(el ; I

Home Switch —l—

Figure 7.2.10. Homing on the Negative Home Switch

Using method 21, if home input is high, the initial direction of movement will be positive, or negative if home input is
low, and reverse (with slow speed) after home input low-high transition. The motor will stop right after home switch high-
low transition.

Using method 22, if home input is low, the initial direction of movement will be negative, or positive if home input is
high, and reverse (with slow speed) after home input high-low transition. The motor will stop right after home switch low-
high transition.

7.2.11 Methods 23 to30: Homing on the Home Switch using limit switches

b e n
—o
W

D

Positive Limit Switch ////

—

Figure 7.2.11. Homing on the Home Switch using limit switches — Positive Initial Move

Using method 23 the initial move will be positive if home input is low and reverse after home input low-high transition,
or move negative if home input is high. Reverse also if the positive limit switch is reached. Stop right after home switch
active region ends (high-low transition).

Using method 24 the initial move will be positive if home input is low, or negative if home input is high and reverse after
home input high-low transition. Reverse also if the positive limit switch is reached. Stop right after home switch active
region starts (low-high transition).

Using method 25 the initial move will be positive and reverse after home input high-low transition. Reverse also if the
positive limit switch is reached. Stop right after home switch active region starts (low-high transition).

Using method 26 the initial move will be positive. Reverse if the positive limit switch is reached, then reverse once again
after home input low-high transition. Stop right after home switch active region ends (high-low transition).

e

=0 :

-

Home switch T 7/ |

Negative Limit Switch B . 7/

Figure 7.2.12. Homing on the Home Switch using limit switches — Negative Initial Move

© Technosoft 2019 96 iPOS CANopen Programming

Using method 27 the initial move will be negative if home input is low and reverse after home input low-high transition.
Reverse also if the negative limit switch is reached. If home input is high move positive. Stop right after home switch
active region ends (high-low transition).

Using method 28 the initial move will be negative if home input is low. If home input is high move positive and reverse
after home input high-low transition. Reverse also if the negative limit switch is reached. Stop right after home switch
active region starts (low-high transition).

Using method 29 the initial move will be negative and reverse after home input high-low transition. Reverse also if the
negative limit switch is reached. Stop right after home switch active region starts (low-high transition).

Using method 30 the initial move will be negative. Reverse if the negative limit switch is reached, then reverse once
again after home input low-high transition. Stop right after home switch active region ends (high-low transition).

Methods 31 and 32: Reserved

7.212 Methods 33 and 34: Homing on the Index Pulse

Using methods 33 or 34 the direction of homing is negative or positive respectively. During these procedures, the motor
will move only at slow speed. The home position is at the index pulse found in the selected direction.

I e 0
o

Index Pulse | | | l

Figure 7.2.13. Homing on the Index Pulse

7.2.13 Method 35: Homing on the Current Position

In method 35 the current position set with the value of home position (object 607 Ch).

7.2.14 Method -1: Homing on the Negative Mechanical Limit and Index Pulse

7.2.14.1 Method -1 based on motor current increase

This method applies to all closed loop motor configurations. It does not apply to Stepper Open Loop configurations.

Move negative until the “Current threshold” is reached for a specified amount of time, then reverse and stop at the first
index pulse. When the motor current is greater than the Homing Current Threshold (index 0x207B) for a specified
amount of time in the Homing Current Threshold Time object (index 0x207C), the motor will reverse direction. The home
position is at the first index pulse to the right of the negative mechanical limit. At the end of the procedure, the reported
motor position will be the one set in Home offset (index 0x607C).

The value of Homing Current Threshold must be lower than the drive current
limit. Otherwise, the homing will not complete successfully (no homing error
will be issued). The current limit is set during setup. See Paragraph 1.3.
Setting the current limit. Current Threshold < current limit

|

Warning!

1

lg

Motor current

(0x207B) Homing Current threshold
Current limit -

Index Pulse I I

(0x207C) Homing Current threshold time —,—l

Figure 7.2.14. Homing on the Negative Mechanical Limit and Index Pulse detecting the motor current increase

© Technosoft 2019 97 iPOS CANopen Programming

7.214.2 Method -1 based on step loss detection

This method applies only to Stepper Open Loop with Encoder on motor (step loss detection) or Encoder on Load. It
does not apply to Closed loop configurations or Stepper Open Loop without an incremental encoder present.

If a Stepper Open Loop with Encoder on motor (step loss detection) or Encoder on Load configuration is selected, this
homing method will detect a Position control error when reaching the mechanical limit. The homing Position Control
Error parameters are set in the objects 6065n Following error window and 207Cn Homing current threshold time.

Move negative until a control error is detected, then reverse and stop at the first index pulse. The home position is at
the first index pulse to the right of the negative mechanical limit. At the end of the procedure, the reported motor position

will be the one set in Home offset (index 0x607C).
2: : N E

(6065h) FOIOWING EITOF WIRAOW o+ oo \oroeereeetie .

(0x207C) Homing Current threshold time —,_l

Position error

Index Pulse

Figure 7.2.15. Homing on the Negative Mechanical Limit and Index Pulse detecting a control error

7.215 Method -2: Homing on the Positive Mechanical Limit and Index Pulse

7.2.15.1 Method -2 based on motor current increase

This method applies to all closed loop motor configurations. It does not apply to Stepper Open Loop configurations.

Move positive until the “Current threshold” is reached for a specified amount of time, then reverse and stop at the first
index pulse. When the motor current is greater than the Homing Current Threshold (index 0x207B) for a specified
amount of time in the Homing Current Threshold Time object (index 0x207C), the motor will reverse direction. The home
position is at the first index pulse to the left of the positive mechanical limit. At the end of the procedure, the reported
motor position will be the one set in Home offset (index 0x607C).

The value of Homing Current Threshold must be lower than the drive current
limit. Otherwise, the homing will not complete successfully (no homing error
will be issued). The current limit is set during setup. See Paragraph 1.3.
Setting the current limit. Current Threshold < current limit

——t—

Motor current

Warning!

-+ Current limit
-f+-% Homing Current threshold (0x207B)

I I Index Pulse

,—\— Homing Current threshold time (0x207C

Figure 7.2.16. Homing on the Positive Mechanical Limit and Index Pulse detecting the motor current increase

7.2.15.2 Method -2 based on step loss detection

This method applies only to Stepper Open Loop with Encoder on motor (step loss detection) or Encoder on Load. It
does not apply to Closed loop configurations or Stepper Open Loop without an incremental encoder present.

If a Stepper Open Loop with Encoder on motor (step loss detection) or Encoder on Load configuration is selected, this
homing method will detect a Position control error when reaching the mechanical limit. The homing Position Control
Error parameters are set in the objects 6065n Following error window and 207Cn Homing current threshold time.

Move positive until a control error is detected, then reverse and stop at the first index pulse. The home position is at the
first index pulse to the left of the positive mechanical limit. At the end of the procedure, the reported motor position will
be the one set in Home offset (index 0x607C).

© Technosoft 2019 98 iPOS CANopen Programming

DS
T3

) SISO AT *.... (6065h) Following error window

Position error
Index Pulse
(0x207C) Homing Current threshold time

Figure 7.2.17. Homing on the Positive Mechanical Limit and Index Pulse detecting a control error

7.216 Method -3: Homing on the Negative Mechanical Limit without an Index Pulse.

7.2.16.1 Method -3 based on motor current increase

This method applies to all closed loop motor configurations. It does not apply to Stepper Open Loop configurations.

Move negative until the “Current threshold” is reached for a specified amount of time, then reverse and stop at the
position set in “Home position”. When the motor current is greater than the Homing Current Threshold (index 0x207B)
for specified amount of time set in the Homing Current Threshold Time object (index 0x207C), the motor will reverse
direction and stop after it has travelled the value set in Home offset (index 0x607C). At the end of the procedure, the
reported motor position will be the one set in Home offset (index 0x607C).

The value of Homing Current Threshold must be lower than the drive current
limit. Otherwise, the homing will not complete successfully (no homing error
will be issued). The current limit is set during setup. See Paragraph 1.3.
Setting the current limit. Current Threshold < current limit

A

0A - e B T

Warning!

|

lg

. 3 Motor current
(0x207B) Homing Current threshold |- I SO
Current limit -~ L—— . e .

(0x207C) Homing Current threshold time —'—l

Home Offset ;. -:

Figure 7.2.18. Homing on the Positive Mechanical Limit without an Index Pulse detecting the motor current increase

7.2.16.2 Method -3 based on step loss detection

This method applies only to Stepper Open Loop with Encoder on motor (step loss detection) or Encoder on Load. It
does not apply to Closed loop configurations or Stepper Open Loop without an incremental encoder present.

If a Stepper Open Loop with Encoder on motor (step loss detection) or Encoder on Load configuration is selected, this
homing method will detect a Position control error when reaching the mechanical limit. The homing Position Control
Error parameters are set in the objects 6065n Following error window and 207Cn Homing current threshold time.

Move negative until a control error is detected, then reverse and stop at the position set in “Home position”. The motor
will reverse direction and stop after it has travelled the value set in Home offset (index 0x607C). At the end of the
procedure, the reported motor position will be the one set in Home offset (index 0x607C).

T R

(6065h) FOIOWING €Fror WInAOW -+ oo\ oo o

Position error

(0x207C) Homing Current threshold time —,_l

Home Offset D> ———

Figure 7.2.19. Homing on the Positive Mechanical Limit without an Index Pulse detecting a control error

© Technosoft 2019 99 iPOS CANopen Programming

7.217 Method -4: Homing on the Positive Mechanical Limit without an Index Pulse.

7.217.1 Method -4 based on motor current increase

This method applies to all closed loop motor configurations. It does not apply to Stepper Open Loop configurations.

Move positive until the “Current threshold” is reached for a specified amount of time, then reverse and stop at the
position set in “Home position”. When the motor current is greater than the Homing Current Threshold (index 0x207B)
for specified amount of time set in the Homing Current Threshold Time object (index 0x207C), the motor will reverse
direction and stop after it has travelled the absolute value setin Home offset (index 0x607C). At the end of the procedure,
the reported motor position will be the one set in Home offset (index 0x607C).

The value of Homing Current Threshold must be lower than the drive current
limit. Otherwise, the homing will not complete successfully (no homing error
will be issued). The current limit is set during setup. See Paragraph 1.3.
Setting the current limit. Current Threshold < current limit

R

Warning!

A
TE1

-+ Current limit
Homing Current threshold (0x207B)
Motor current

-]—\— Homing Current threshold time (0x207C)
p—————g Home Offset

Figure 7.2.20. Homing on the Positive Mechanical Limit without an Index Pulse detecting the motor current increase

7.217.2 Method -4 based on step loss detection

This method applies only to Stepper Open Loop with Encoder on motor (step loss detection) or Encoder on Load. It
does not apply to Closed loop configurations or Stepper Open Loop without an incremental encoder present.

If a Stepper Open Loop with Encoder on motor (step loss detection) or Encoder on Load configuration is selected, this
homing method will detect a Position control error when reaching the mechanical limit. The homing Position Control
Error parameters are set in the objects 6065n Following error window and 207Cn Homing current threshold time.

Move positive until a control error is detected, then reverse and stop at the position set in “Home position”. The motor
will reverse direction and stop after it has travelled the value set in Home offset (index 0x607C). At the end of the
procedure, the reported motor position will be the one set in Home offset (index 0x607C).

| —

- (6065h) Following error window

Position error

. ,__ (0x207C) Homing Current threshold time

;- .: Home Offset

Figure 7.2.21. Homing on the Positive Mechanical Limit without an Index Pulse detecting the motor current increase

© Technosoft 2019 100 iPOS CANopen Programming

7.3 Homing Mode Objects

This chapter describes the method by which the drive seeks the home position. There are 35 built-in homing methods,
as described in paragraph 7.1. Using the EasyMotion Studio software, one can alter each of these homing methods to
create a custom homing method.

You can select which homing method to be used by writing the appropriate number in the object 6098h homing method.

The user can specify the speeds and acceleration to be used during the homing. There is a further object homing offset
that allows the user to displace zero in the user’s coordinate system from the home position.

In the homing mode, the bits in Controlword and Statusword have the following meaning:

7.31 Controlword in homing mode

MSB LSB
See 6040n Halt See 6040n Reserved Homing operation start See 6040n
15 9 8 7 6 5 4 3 0

Table 7.3.1 — Controlword bits description for Homing Mode

Name Value Description
H°f“'”9 0->1 Only a 0 to 1 transition will start homing mode
operation start
Halt 0 Execute the instruction of bit 4
1 Stop drive with homing acceleration

7.3.2 Statusword in homing mode

MSB LSB
See 6041, Homing i Oullie See 6041, |ardet See 6041n
error attained reached
15 14 13 12 11 10 9 0

Table 7.3.2 — Statusword bits description for Homing Mode

Name Value Description

0 Halt = 0: Home position not reached
Target reached Halt = 1: Drive decglgrates

1 Halt = 0: Home position reached

Halt = 1: Velocity of drive is 0

Homing 0 Homing mode not yet completed
attained 1 Homing mode carried out successfully
Homing error 0 No homing error

1 Homing error occurred; homing mode not carried out successfully.

Table 7.3.3 — Definition of Statusword bit 10,bit 12 and bit 13 in homing mode

Bit 13 Bit12 Bit10 Definition
0 0 Homing procedure is in progress

1 Homing procedure is interrupted or not started
0 Homing is attained, but target is not reached

1 Homing procedure is completed successfully
0 Homing error occurred, velocity is not 0
1
X

Homing error occurred, velocity is 0
reserved

0
0
0
1
1
1

==l e (= =]

7.3.3 Object 607Ch: Home offset

The home offset will be set as the new drive position (reported in object 6064+) after a homing procedure is finished. An
exception applies only to the homing motions -3 and -4. See their description for more details.

If Object 210Bh: Auxiliary Settings Register2 bit 12 is set to 1, then after the homing ends, the actual position (6064h)
will not be reset to the value of 607Ch. This option is useful when using an absolute encoder, and only the absolute
position of the home sensor is needed. The homing will end the positioning right on the home sensor.

Object description:

Index 607Cn
Name Home offset
Object code VAR

Data type INTEGER32

© Technosoft 2019 101 iPOS CANopen Programming

Entry description:

Access RW

PDO mapping Possible
Units PU

Value range INTEGER32
Default value 0

The default value for this object can be changed by editing the parameter “HOME_OFFSET_607C” found in
parameters.cfg of the project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

7.3.4 Object 6098n: Homing method

The homing method determines the method that will be used during homing.

Object description:
Index 6098h
Name Homing method
Object code VAR
Data type INTEGERS8
Entry description:
Access RW
PDO mapping Possible
Value range INTEGERS
Default value 0
Data description:
Value Description
-128 ... -1 Reserved
-4..-1 Methods -4 to -1
0 No homing operation will be executed
1...14 Methods 1 to 14
15,16 reserved
17..30 Methods 17 to 30
31,32 reserved
33..35 Methods 33 to 35
36 ... 127 reserved

There are 35 built-in homing methods, conforming to DSP402 device profile. Using the EasyMotion Studio software,
one can customize each of these homing methods.

The default value for this object can be changed by editing the parameter “HOME_NR_6098” found in parameters.cfg
of the project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

7.3.5 Object 6099n: Homing speeds

This object defines the speeds used during homing. It is given in velocity units. There are 2 homing speeds; in a typical
cycle the faster speed is used to find the home switch and the slower speed is used to find the index pulse.

Object description:

Index 6099
Name Homing speeds
Object code ARRAY
Data type UNSIGNED32
Entry description:
Sub-index 0
Description Number of entries
Access RO
PDO mapping No
Value range 2
Default value 2
Sub-index 1
Description Speed during search for switch
Access RwW
PDO mapping Possible
Value range UNSIGNED32
© Technosoft 2019 102 iPOS CANopen Programming

Default value 0x00010000 (1.0 1U)

Sub-index 2

Description Speed during search for zero
Access RW

PDO mapping Possible

Value range UNSIGNED32

Default value 0x00010000 (1.0 1U)

The default value for sub-index 1 can be changed by editing the parameter “HOME_HSPD_6099_01" found in
parameters.cfg of the project file.

The default value for sub-index 2 can be changed by editing the parameter “HOME_LSPD_6099_02” found in
parameters.cfg of the project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

7.3.6 Object 609As: Homing acceleration

The homing acceleration establishes the acceleration to be used for all the accelerations and decelerations with the
standard homing modes and is given in acceleration units.

Object description:
Index 609An
Name Homing acceleration
Object code VAR
Data type UNSIGNED32
Entry description:
Access RW
PDO mapping Possible
Units AU
Value range UNSIGNED32
Default value 0x0000199A (0.1 1U)

The default value for this object can be changed by editing the parameter “HOME_ACC_609A” found in parameters.cfg
of the project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

7.3.7 Object 207Bn: Homing current threshold

The Homing Current Threshold Level object together with object Homing current threshold time (207Cn) defines the
protection limits when reaching a mechanical stop during homing methods -1,-2,-3 and -4. The object defines the value
of current in the drive, over which the homing procedure determines that the mechanical limit has been reached when
it lasts more than the time interval specified in object 207Ch. The current is set in internal units.

The value of Homing Current Threshold must be lower than the drive current
limit. Otherwise, the homing will not complete successfully (no homing error
will be issued). The current limit is set during setup. See Paragraph 1.3. Setting
the current limit. Current Threshold < current limit

Warning!

Object description:

Index 207Bn
Name Homing current threshold
Object code VAR
Data type INTEGER16
Entry description:
Access RW
PDO mapping Possible
Units Cu
Value range -32768 ... 32767
Default value 0

The default value for this object can be changed by editing the parameter “HOME_CRT_207B” found in parameters.cfg
of the project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

© Technosoft 2019 103 iPOS CANopen Programming

7.3.8 Object 207Ch: Homing current threshold time

The Homing current threshold time object together with object Homing current threshold (207Bn) defines the protection
limits when reaching a mechanical stop during homing methods -1,-2,-3 and -4. The object sets the time interval after
the homing current threshold is exceeded. After this time is completed without the current dropping below the threshold,
the next step in the homing shall be executed. It is set in time internal units.

In case a Stepper Open Loop with Step loss detection is used, this object will set the control error time detection when
methods -1 to -4 are used.

Object description:
Index 207Cn
Name Homing current threshold time
Object code VAR
Data type UNSIGNED16
Entry description:
Access RW
PDO mapping Possible
Units TU
Value range 0 ... 65535
Default value 0

The default value for this object can be changed by editing the parameter “HOME_TIME_207C” found in parameters.cfg
of the project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

7.4 Homing example

Execute homing method number 18.
1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data
0 01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data
206 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.
Send the following message:

COB-ID Data
206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.
Send the following message:

COB-ID Data
206 OF 00

5. Homing speed during search for zero. Set the speed during search for zero to 150 rpm. By using a 500 lines
incremental encoder and 1ms sample rate for position/speed control the corresponding value of object 6099
sub-index 2 expressed in encoder counts per sample is 50000k.

Send the following message (SDO access to object 6099 sub-index 2, 32-bit value 00050000h):

COB-ID Data
606 2399 60 02 00 00 05 00

6. Homing speed during search for switch. Set the speed during search for switch to 600 rpm. By using a 500
lines incremental encoder and 1ms sample rate for position/speed control the corresponding value of object
6099 sub-index 1 expressed in encoder counts per sample is 140000k.

© Technosoft 2019 104 iPOS CANopen Programming

Send the following message (SDO access to object 6099 sub-index 1, 32-bit value 00140000h):

COB-ID

Data

606

23 99 60 01 00 00 14 00

Homing acceleration. The homing acceleration establishes the acceleration to be used with the standard
homing moves. Set this value at 5 rot/s?. By using a 500 lines incremental encoder and 1ms sample rate for
position/speed control the corresponding value of object 609An expressed in encoder counts per square
sample is 28Fh.

Send the following message (SDO access to object 609An, 32-bit value 0000028Fh):

8.

COB-ID Data

606 23 9A 60 00 8F 02 00 00

Home offset. Set the home offset to 1 rotation. By using a 500 lines incremental encoder the corresponding
value of object 607Ch expressed in encoder counts is 7DOn.

Send the following message (SDO access to object 607Ch, 32-bit value 000007DO0x):

COB-ID

Data

606

23 7C 60 00 DO 07 00 00

9. Homing method. Select homing method number 18.

Send the following message (SDO access to object 6098, 8-bit value 12n):

COB-ID

Data

606

2F 98 60 00 12 00 00 00

10. Mode of operation. Select homing mode.

Send the following message (SDO access to object 6060n, 8-bit value 6n):

COB-ID

Data

606

2F 60 60 00 06 00 00 00

11. Start the homing.

Send the following message:

COB-ID

Data

206

1F 00

12. Press for 5s the LSP button on the 10 board and release it.

13. Wait for homing to end.

14. Check the value of motor actual position.

Send the following message (SDO access to object 6064n):

COB-ID Data

606 40 64 60 00 00 00 00 00

The node will return the value of motor actual position that should be the same as the value of home offset (plus or
minus few encoder counts depending on your position tuning).

© Technosoft 2019 105

iPOS CANopen Programming

8 Position Profile Mode

8.1 Overview

In Position Profile Mode, the drive controls the position.
The Position Profile Mode supports 2 motion modes:

o Trapezoidal profile. The built-in reference generator computes the position profile with a trapezoidal shape of
the speed, due to a limited acceleration. The CANopen master specifies the absolute or relative Target
Position (index 607An), the Profile Velocity (index 6081n) and the Profile Acceleration (6083h)

In relative mode, the position to reach can be computed in 2 ways: standard (default) or additive. In standard
relative mode, the position to reach is computed by adding the position increment to the instantaneous position
in the moment when the command is executed. In the additive relative mode, the position to reach is computed
by adding the position increment to the previous position to reach, independently of the moment when the
command was issued. Bit 11 of Controlword activates the additive relative mode.

e S-curve profile the built-in reference generator computes a position profile with an S-curve shape of the speed.
This shape is due to the jerk limitation, leading to a trapezoidal or triangular profile for the acceleration and an
S-curve profile for the speed. The CANopen master specifies the absolute or relative Target Position (index
607An), the Profile Velocity (index 6081r), the Profile Acceleration (60831) and the jerk rate. The jerk rate is
set indirectly via the Jerk time (index 2023n), which represents the time needed to reach the maximum
acceleration starting from zero.

There are two different ways to apply target positions to a drive, controlled by the change set immediately bit in
Controlword:

8.1.1 Discrete motion profile (change set immediately = 0)

After reaching the target position the drive unit signals this status to a CANopen master and then receives a new set-
point. After reaching a tfarget position the velocity normally is reduced to zero before starting a move to the next set-
point.

After the target position is sent to the drive, the CANopen master has to set the new set-point bit in Controlword. The
drive responds with bit set-point acknowledge set in Statusword. After that, the master has to reset bit new set-point to
0. Following this action, the drive will signalize that it can accept a new set-point by resetting set-point acknowledge bit
in Statusword after the reference generator has reached the designated demand position.

velocity ,

v, -

v, |

to t1 tz t3 time’

8.1.2 Continuous motion profile (change set immediately = 1)

The drive unit immediately processes the next target position, even if the actual movement is not completed. The drive
readapts the actual move to the new target position.

In this case, the handshake presented for change set immediately = 0 is not necessary. By setting the new set-point bit,
the master will trigger the immediate update of the target position. In this case, if the target position is set as relative,
also bit 11 is taken into consideration (with or without additive movement).

Remark:

In case object 6086x (Motion Profile Type) is set to 3 (jerk-limited ramp = S-curve profile), then change set immediately
bit must be 0, else a command error is issued.

velocity ,
v, +

v, |

t, t, t, time

© Technosoft 2019 106 iPOS CANopen Programming

8.1.3

Controlword in profile position mode

MSB LSB
See Operation See Halt See Abs/rel Change set New set- See
6040n Mode 6040n 6040n immediately point 6040n
15 12 11 10 9 8 7 6 5 4 3.0

Table 8.1.1 — Controlword bits description for Position Profile Mode

Name Value Description
Trapezoidal profile - In case the movement is relative, do not add the new
0 target position to the old demand position
Operation S-curve profile — Stop the motion with S-curve profile (jerk limited ramp)
Mode Trapezoidal profile - In case the movement is relative, add the new target
1 position to the old demand position to obtain the new target position
S-curve profile — Stop the motion with trapezoidal profile (linear ramp)
New set-point 0 Do not assume target position
1 Assume target position (update the new motion parameters)
Change set 0 Finish the actual positioning and then start the next positioning
. ; Interrupt the actual positioning and start the next positioning. Valid only for
immediately 1 . h
linear ramp profile.
0 Target position is an absolute value
Abs / rel e .
1 Target position is a relative value
Halt 0 Execute positioning
1 Stop drive with profile acceleration
8.1.4 Statusword in profile position mode
MSB LSB
See 6041n Following - Set-point See 6041, 1ar9et See 6041n
error acknowledge reached
15 14 13 12 11 10 9 0

Table 8.1.2 — Statusword bits description for Position Profile Mode

Name Value Description

0 Halt = 0: Target position not reached
Target reached Halt = 1: Drive decelerates

1 Halt = 0: Target position reached

Halt = 1: Velocity of drive is 0
Set-point 0 Trajectory generator will accept a new set-point
acknowledge 1 Trajectory generator will not accept a new set-point.
. 0 No following error

Following error -

1 Following error

8.2 Position Profile Mode Objects

8.2.1

Object 607An: Target position

The target position is the position that the drive should move to in position profile mode using the current settings of

motion control parameters such as velocity, acceleration, and motion profile type etc. It is given in position units.

The position units are user defined. The value can be converted into position increments using the position factor (see

Chapter 0 Factor group).

If Controlword bit 6 = 0 (e.g. absolute positioning), represents the position to reach.

If Controlword bit 6 = 1 (e.g. relative positioning), represents the position displacement to do. When Controlword bit 14
= 0, the new position to reach is computed as: motor actual position (6064n) + displacement. When Controlword bit 14

=1, the new position to reach is computed as: actual demand position (6062) + displacement.

Object description:

Index 607An

Name Target position
Object code VAR

Data type INTEGER32

© Technosoft 2019

107

iPOS CANopen Programming

Entry description:

Access RW

PDO mapping Yes

Value range =281 .. 2811
Default value No

8.2.2 Object 6081n: Profile velocity
In a position profile, it represents the maximum speed to reach at the end of the acceleration ramp. The profile velocity
is given in speed units.

The speed units are user defined. The value can be converted into internal units using the velocity encoder factor (see
Chapter 0

© Technosoft 2019 108 iPOS CANopen Programming

Factor group).

By default, the velocity value is given in internal units. They are encoder increments/Sample loop. The default Sample
loop is 1ms. The velocity variable is 32 bits long and it receives 16.16 data. The MSB takes the integer part and the LSB
takes the factionary part.

Example: for a target speed of 50.00 1U, 0x00320000 must be set in 6081 if no factor group is chosen.

Object description:
Index 6081h
Name Profile velocity
Object code VAR
Data type UNSIGNED32
Entry description:
Access RW
PDO mapping Possible
Value range UNSIGNED32
Default value -

8.2.3 Object 6083n: Profile acceleration

In position or speed profiles, represents the acceleration and deceleration rates used to change the speed between 2
levels. The same rate is used when Quick Stop or Disable Operation commands are received. The profile acceleration
is given in acceleration units.

The acceleration units are user defined. The value can be converted into internal units using the acceleration factor (see
Chapter 0 Factor group).

If no factor is applied, the same description as object 6081+ applies. So 65536 |U = 1 encoder increment / sample?.
Object description:

Index 6083n

Name Profile acceleration

Object code VAR

Data type UNSIGNED32
Entry description:

Access RW

PDO mapping Possible

Value range 0..(2%2-1)

Default value -

8.24 Object 6085n: Quick stop deceleration

The quick stop deceleration is the deceleration used to stop the motor if the Quick Stop command is received and the
quick stop option code object (index 605An) is set to 2 or 6. It is also used when the fault reaction option code object
(index 605En) and the halt option code object (index 605Dn) is 2. The quick stop deceleration is given in user-defined
acceleration units.

Object description:

Index 6085n
Name Quick stop deceleration
Object code VAR
Data type UNSIGNED32
Entry description:
Access RW
PDO mapping Possible
Value range 0..(2%2-1)
Default value -

8.2.5 Object 2023h: Jerk time

In this object, you can set the time to use for S-curve profile (jerk-limited ramp set in Object 6086x — Motion Profile Type).
The time units are given in ms.

Object description:
Index 2023n
Name Jerk time
Object code VAR
Data type UNSIGNED16
Entry description:

© Technosoft 2019 109 iPOS CANopen Programming

Access RW
PDO mapping Possible
Value range 0 ... 65535
Default value -
8.2.6 Object 6086n: Motion profile type
Object description:
Index 6086n
Name Motion profile type
Object code VAR
Data type INTEGER16
Entry description:
Access RW
PDO mapping Possible
Value range INTEGER16
Default value 0

Data description:

Profile code Profile type

-32768 ... -1 Manufacturer specific (reserved)
0 Linear ramp (trapezoidal profile)
1,2 Reserved

3 Jerk-limited ramp (S-curve)

4 ...32767 Reserved

8.2.7

Object 6062n: Position demand value

This object represents the output of the trajectory generation. The position demand value is given in user-defined

position units.

Object description:
Index 6062n
Name Position demand value
Object code VAR
Data type INTEGER32
Entry description:
Access RO
PDO mapping Possible
Value range =281 ... 2811
Default value -

8.2.8

Object 6063n: Position actual internal value

This object represents the actual value of the position measurement device in increments.

Object description:
Index 6063n
Name Position actual value
Object code VAR
Data type INTEGER32
Entry description:
Access RO
PDO mapping Possible
Units increments
Value range =281 . 2811
Default value =

8.2.9

Object 6064n: Position actual value

This object represents the actual value of the position measurement device. The position actual value is given in user-
defined position units.

© Technosoft 2019 110 iPOS CANopen Programming

Remarks:

1. When using a stepper open loop motor with no encoder this object reports the value of object 6062, Position
demand value. In this case, object 6063n will report the value 0, as there is no feedback device.
2. When using a stepper open loop motor with no encoder with encoder on motor configuration (for step loss
detection), based on the internal register ASR bit 11, this object reports:
= ASR.11=0 (default) - the value of object 6062n Position demand value. In this case, object 6063n will show the
actual encoder value in increments.
= 1ASR.11=1 — the value of the feedback device scaled into microsteps which are the same value that is used
for position commands in 607An

Object description:
Index 6064
Name Position actual value
Object code VAR
Data type INTEGER32
Entry description:
Access RO
PDO mapping Yes
Value range =281 .. 2811
Default value -

8.2.10 Object 6065nh: Following error window

This object defines a range of tolerated position values symmetrically to the position demand value, expressed in
position units. If the position actual value is above the following error window for a period larger than the one defined in
following error time out, a following error occurs. If the value of the following error window is 232-1, the following control
is switched off.

The maximum value allowed for the following error window parameter, expressed in increments, is:

- 2321 for F514G or newer firmware
- 32767 for F508x/509x and F523x/524x firmware

Object description:
Index 6065n
Name Following error window
Object code VAR
Data type UNSIGNED32
Entry description:
Access RW
PDO mapping Possible
Value range UNSIGNED32
Default value -

This object is automatically set in Drive Setup by modifying the Position control error.
The value for this object can be changed by editing the parameter:

- “ERRMAXL” for F514G or newer firmware
- “ERRMAX” for F508x/509x and F523x/524x firmware

found in parameters.cfg of the project file.
Activating Object 2076h: Save current configuration, will set its current values as the a new default.

8.2.11 Object 6066nh: Following error time out

See 6065n, following error window. The value is given in control loop time which is by default 1ms.
Object description:

Index 6066h
Name Following error time out
Object code VAR
Data type UNSIGNED16
Entry description:
Access RW
PDO mapping Possible

" ASR.11=1 implementation is available only of F514x firmwares.

© Technosoft 2019 111 iPOS CANopen Programming

Units TU
Value range 0...65535
Default value =

The value for this object can be changed by editing the parameter “TERRMAX” found in parameters.cfg of the project
file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

8.2.12 Object 6067nh: Position window

The position window defines a symmetrical range of accepted positions relative to the target position. If the position
actual value is within the position window for a time period defined inside the position window time object, this target
position is regarded as reached. The position window is given in position units. If the value of the position window is 232-
1, the position window control is switched off and the target position will be regarded as reached when the position
reference is reached.

The maximum value allowed for the position window parameter, expressed in increments, is 32767.

Object description:
Index 6067
Name Position window
Object code VAR
Data type UNSIGNED32
Entry description:
Access RW
PDO mapping Possible
Value range UNSIGNED32
Default value -

This object is automatically set in Drive Setup by modifying the Band in Motion complete settings in Drive setup.
totion complete settings
Band [0.5 [t | Time [0.001 [+ =

The value for this object can be changed by editing the parameter “POSOKLIM” found in parameters.cfg of the project
file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

8.2.13 Object 6068h: Position window time

See description of Object 6067h: Position window.
Object description:

Index 6068h
Name Position window time
Object code VAR
Data type UNSIGNED16
Entry description:
Access RW
PDO mapping Possible
Units TU
Value range 0 ... 65535
Default value -

This object is automatically set in Drive Setup by modifying the Time in Motion complete settings in Drive setup.

Motion complete settings

Band [0.5 [t =] Time [0.001 [+ =

The value for this object can be changed by editing the parameter “TONPOSOK” found in parameters.cfg of the project
file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

8.2.14 Object 607Bn: Position range limit

© Technosoft 2019 112 iPOS CANopen Programming

This object indicates the configured maximal and minimal position range limits. It limits the numerical range of the input
value. On reaching or exceeding these limits, the input value shall wrap automatically to the other end of the range.
Wrap-around of the input value may be prevented by setting software position limits as defined in software position limit

object (607Dh). To disable the position range limits, the min position range limit (sub-index 01h) and max position range
limit (sub-index 02h) must be set to 0. The values are given in user-defined position units.

Object description:
Index 607Bn
Name Position range limit
Object code ARRAY
Data type INTEGER32
Entry description:
Sub-index 0
Description Number of entries
Access RO
PDO mapping No
Default value 2
Sub-index 1
Description Min position range limit
Access RW
PDO mapping Possible
Value range INTEGER32
Default value No
Sub-index 2
Description Max position range limit
Access RW
PDO mapping Possible
Value range INTEGER32
Default value No

This object and its values can be defined directly in Drive Setup under the “Position range limits” area.
Also, activating Object 2076h: Save current configuration, will set its current values as the a new default.

8.2.15 Object 60F2h: Positioning option code

This object configures the positioning behavior as for the profile positioning mode or the interpolated positioning mode.

Object description:
Index 60F2n
Name Positioning option code
Object code VAR
Data type UNSIGNED16
Entry description:
Access RW
PDO mapping Possible
Value range UNSIGNED16
Default value 0000h
MSB LSB
Reserved | rado | Reserved
15 7 6 5 0
Table 8.2.1 — Positioning option code bits description
Name bit 7 bit 6 Description
Normal positioning similar to linear axis; If reaching or exceeding the
Position range limits (607Bh) the input value shall wrap automatically to the
0 0 other end of the range. Positioning can be relative or absolute.
d Only with this bit combination, the movement greater than a modulo value
rado is possible.
Positioning only in negative direction; if target position is higher than actual
0 1 position, axis moves over the min position limit (607Dh, sub-index 01h) to
the target position.

© Technosoft 2019

113

iPOS CANopen Programming

Positioning only in positive direction; if target position is lower than actual
1 0 position, axis moves over the max position limit (607Bh, sub-index 02h) to
the target position.
Positioning with the shortest way to the target position.
1 1 NOTE: If the difference between actual value and target position in a 360°
system is 180°, the axis moves in positive direction.

The figure below shows movement examples depending on settings of the bits 6 and 7. Here the min position range
limit (607Bh, sub-index 01h) is 0° and the max position range limit (607Bh, sub-index 02h) is 360°.
330 360=0 330 360=0 330 360=0 330 360=0

Bit7 Bit6 Bit7 Bit6 Bit7 Bit6 Bit7 Bit6

00 01 10 11
210 150 210 150 210 150 210 150

Normal only negative only positive optimized
(similar to linear axis) direction direction (shortest way)

Figure 8.2.1. Rotary axis positioning example

A movement greater than a modulo value with more than 360° (bit 6 and 7 in this object are set to 0) on a rotary axis
can be done with relative and absolute values depending on the bit 6 in the controlword. There are positive and negative
values possible.

The figure below shows an example for absolute positioning in a 360° system. The actual position is 90° and absolute
target position is 630°. The axis will move in positive direction one time via the max position limit to 270°. To move in
negative direction, the negative sign for target position shall be used.

-360, -180, 0, 90, 180, 270, 360, 450, 540, 630,
90, 180, 270,
A

Start position Target position

Figure 8.2.2. Example for absolute movement greater than modulo value

The figure below shows an example for relative positioning in a 360° system. The actual position is 300° and relative
target position is 500°. The axis will move in positive direction two times via the max position limit to 80°. To move in
negative direction, the negative sign for target position is used. The difference between min and max position range
limits (see object 607Bh) are representable in multiples of encoder increments.

360=0

Bit7 Bit6

00

Figure 8.2.3. Example for relative movement greater than modulo value

The default value for this object can be changed by editing the parameter “POSOPTCODE” found in parameters.cfg of
the project file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

© Technosoft 2019 114 iPOS CANopen Programming

8.2.16 Object 60F4n: Following error actual value

This object represents the actual value of the following error, given in user-defined position units.
Object description:

Index 60F4n
Name Following error actual value
Object code VAR
Data type INTEGER32
Entry description:
Access RO
PDO mapping Possible
Value range INTEGER32
Default value -

8.2.17 Object 60FCh: Position demand internal value

This output of the trajectory generator in profile position mode is an internal value using position increments as units. It
can be used as an alternative to position demand value (6062n).

Object description:
Index 60FCn
Name Position demand internal value
Object code VAR
Data type INTEGER32
Entry description:
Access RO
PDO mapping Possible
Units Increments
Value range =231 . 2311
Default value -

8.2.18 Object 2022h: Control effort

This object can be used to visualize the control effort of the drive (the reference for the current controller). It is available
in internal units.

Object description:
Index 2022
Name Control effort
Object code VAR
Data type INTEGER16
Entry description:
Access RO
PDO mapping Yes
Value range INTEGER16
Default value -

8.2.19 Object 2081n: Set/Change the actual motor position

This object sets the motor position to the value written in it. It affects object 6064n, 6063n and 6062h.
The object is not affected by the Factor Group and it receives its value in Internal Units.

Object description:
Index 2081
Name Set actual position
Object code VAR
Data type INTEGER32

© Technosoft 2019 115 iPOS CANopen Programming

Entry description:

Access RW

PDO mapping No

Value range -281,..2%11
Default value -

8.2.20 Object 20881': Actual internal position from sensor on motor

This object shows the position value read from the encoder on the motor in increments, in case a dual loop control
method is used.

The factor group objects have no effect on it.

Object description:
Index 2088h
Actual internal position from sensor on
Name
motor
Object code VAR
Data type INTEGER32
Entry description:
Access RO
PDO mapping Possible
Units increments
Value range =281 .. 2811
Default value =

8.2.21 Object 208Dn?: Auxiliary encoder position

This object represents the actual value of the auxiliary position measurement device in internal units. The factor group
objects have no effect on it.

Object description:
Index 208Dn
Name Auxiliary encoder value
Object code VAR
Data type INTEGER32
Entry description:
Access RO
PDO mapping Possible
Units increments
Value range =281 ... 2811
Default value =

8.3 Position Profile Examples

8.31 Absolute trapezoidal example

Execute an absolute trapezoidal profile. First, perform 4 rotations, wait motion complete and then set the target position
of 16 rotations.

1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data
0 01 06
2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the

shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data
206 06 00

" Object 2088 applies only to drives which have a secondary feedback
2 Object 208Dn is available only drives which have a secondary feedback input

© Technosoft 2019 116 iPOS CANopen Programming

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID Data
206 07 00
4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation

command via Controlword associated PDO.

Send the following message:

COB-ID Data
206 OF 00
5. Modes of operation. Select position mode.

Send the following message (SDO access to object 6060n, 8-bit value 1n):

COB-ID Data
606 2F 60 60 00 01 00 00 00
6. Target position. Set the target position to 4 rotations. By using a 500 lines incremental encoder the

corresponding value of object 607 An expressed in encoder counts is 1F40n.
Send the following message (SDO access to object 607 An 32-bit value 00001F40k):

COB-ID Data
606 23 7A 60 00 40 1F 00 00
7. Target speed. Set the target speed normally attained at the end of acceleration ramp to 500 rpm. By using a

500 lines incremental encoder and 1ms sample rate for position/speed control the corresponding value of object 608 1n
expressed in encoder counts per sample is 10AAAch(16.667 counts/sample).

Send the following message (SDO access to object 6081n, 32-bit value 0010AAAch):

COB-ID Data
606 23 816000 AC AA1000
8. Start the profile.
Send the following message
COB-ID Data
206 1F 00
9. Wait movement to finish.
10. Reset the set point.
Send the following message
COB-ID Data
206 OF 00
11. Target position. Set the target position to 16 rotations. By using a 500 lines incremental encoder the

corresponding value of object 607 An expressed in encoder counts is 7D00k.
Send the following message (SDO access to object 607 An 32-bit value 00007D00n):

COB-ID Data
606 23 7A 60 00 00 7D 00 00
12. Start the profile.
Send the following message
COB-ID Data
206 1F 00
13. Wait movement to finish.
14. Check the value of motor actual position.

Send the following message (SDO access to object 6064n):

COB-ID Data
606 40 64 60 00 00 00 00 00
15. Check the value of position demand value.

Send the following message (SDO access to object 6062h):
| COB-ID Data |

© Technosoft 2019 117 iPOS CANopen Programming

| 606 40 62 60 00 00 00 00 00 |

At the end of movement the motor position actual value should be equal with position demand value (plus or minus few
encoder counts depending on your position tuning) and the motor should rotate 16 times.

8.3.2 Absolute Jerk-limited ramp profile example

Execute an absolute Jerk-limited ramp profile.
Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data
0 01 06

Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the shutdown
command via Controlword associated PDO.
Send the following message:

COB-ID Data
206 06 00

Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command via
Controlword associated PDO.
Send the following message:

COB-ID Data
206 07 00

Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data
206 OF 00

Mode of operation. Select position mode.

Send the following message (SDO access to object 6060n, 8-bit value 1n):

COB-ID Data
606 2F 60 60 00 01 00 00 00

Motion profile type. Select Jerk-limited ramp.

Send the following message (SDO access to object 6086n, 16-bit value 3n):
COB-ID Data
606 2B 86 60 00 03 00 00 00

Target position. Set the target position to 5 rotations. By using a 500 lines incremental encoder the corresponding
value of object 607An expressed in encoder counts is 2710h.
Send the following message (SDO access to object 607 An 32-bit value 000027 10h):

COB-ID Data
606 23 7A 60 00 10 27 00 00

Target speed. Set the target speed to 150 rpm. By using a 500 lines incremental encoder and 1ms sample rate for
position/speed control the corresponding value of object 6081n expressed in encoder counts per sample is
00050000n(5.0 counts/sample).

Send the following message (SDO access to object 6081, 32-bit value 00050000n):

COB-ID Data

606 23 81 60 00 00 00 05 00

Jerk time. Set the time to use for Jerk-limited ramp. For more information related to this parameter, see the ESM help

Send the following message (SDO access to object 2023n, 16-bit value 13Bh):

COB-ID Data
606 2B 23 20 00 3B 01 00 00

Start the profile.

Send the following message
| COB-ID Data

© Technosoft 2019 118 iPOS CANopen Programming

| 206 1F 00

Wait movement to finish.

Check the value of motor actual position.

Send the following message (SDO access to object 6064h):

COB-ID Data
606 40 64 60 00 00 00 00 00

Check the value of position demand value.

Send the following message (SDO access to object 6062h):

COB-ID Data
606 40 62 60 00 00 00 00 00

At the end of movement, the motor position actual value should be equal with position demand value (plus or minus few
encoder counts depending on your position tuning).

© Technosoft 2019 119 iPOS CANopen Programming

9 Interpolated Position Mode

9.1 Overview

The interpolated Position Mode is used to control multiple coordinated axles or a single axle with the need for time-
interpolation of set-point data. The Interpolated Position Mode can use the time synchronization mechanism for a time
coordination of the related drive units, based on the SYNC and the High Resolution Time Stamp messages (see object
1013 for details).

The Interpolated Position Mode allows a host controller to transmit a stream of interpolation data to a drive unit. The
interpolation data is better sent in bursts because the drive supports an input buffer. The buffer size is the number of
interpolation data records that may be sent to the drive to fill the input buffer.

The interpolation algorithm can be defined in the interpolation sub mode select. Linear (PT — Position Time) interpolation
is the default interpolation method.

9.1.1 Internal States

¢disable voltage” Operation enabled” quickstop 5
shutdown”

Interpolation Position changing the Mode

Mode selected of Operation or
1) deselect Interpolated
Position Mode

()
1

Interpolation inactive

I
enable disable
Interpolation Interpolation

1
Interpolation active

Figure 9.1.1. Internal States for the Interpolated Position Mode

) See state machine Operation enabled”

Interpolation inactive: This state is entered when the device is in state Operation enabled and the Interpolated Position
Mode is selected. The drive will accept input data and will buffer it for interpolation calculations, but it does not move
the motor.

Interpolation active: This state is entered when a device is in state Operation enabled and the Interpolation Position
Mode is selected and enabled. The drive will accept input data and will move the motor.

State Transitions of the Internal States
State Transition 1: NO IP-MODE SELECTED => IP-MODE INACTIVE
Event: Select ip-mode with modes of operations while inside Operation enable
State Transition 2: IP-MODE INACTIVE => NO IP-MODE SELECTED
Event: Select any other mode while inside Operation enable
State Transition 3: IP-MODE INACTIVE => IP-MODE ACTIVE
Event: Set bit enable ip mode (bit4) of the Controlword while in ip-mode and Operation enable
State Transition 4: IP-MODE ACTIVE => IP-MODE INACTIVE
Event: Reset bit enable ip mode (bit4) of the Controlword while in ip-mode and Operation enable

9.1.2 Controlword in interpolated position mode

MSB LSB
See ‘ See See Abs / Enable ip
6040 Stop option 6040 Halt 6040 rel Reserved mode See 6040n
15 12 11 10 9 8 7 6 5 4 3 0

© Technosoft 2019 120 iPOS CANopen Programming

Table 9.1.1 — Controlword bits description for Interpolated Position Mode

Name 6040n bit Value Description
Enable ip 0 Interpolated position mode inactive
4 P -

mode 1 Interpolated position mode active
Abs / rel 6 0 Set position is an absolute value

1 Set position is a relative value (similar to Cyclic Synchronous Velocity)
Halt 8 0 Executg the .instructi'on of bit 4 '

1 Stop drive with (profile acceleration)

0 On transition to inactive mode, stop drive immediately using profile
Stop 11 acceleration
option 1 On ftransition to inactive mode, stop drive after finishing the current

segment.

9.1.3 Statusword in interpolated position mode

MSB LSB
See 6041h Reserved ip mode active See 6041n aise See 6041n

reached
15 14 13 12 11 10 9 0

Table 9.1.2 — Statusword bits description for Interpolated Position Mode

Name Value Description
0 Halt = O: Final position not reached
Target reached Halt = 1: D'nve degglerates
1 Halt = 0: Final position reached
Halt = 1: Velocity of drive is 0
ip mode active Interpolated position mode inactive
1 Interpolated position mode active

9.2 Interpolated Position Objects

9.2.1 Object 60COn: Interpolation sub mode select

In the Interpolated Position Mode the drive supports three interpolation modes:

1. Linear interpolation as described in the CiA 402 standard (when object 208En bit8=1); This mode is almost
identical with Cyclic Synchronous Position mode, only that it receives its position data into 60C1n sub-index 01
instead of object 607An. No interpolation point buffer will be used.

2. PT (Position — Time) linear interpolation (legacy) (when object 208En bit8=0)

3. PVT (Position — Velocity — Time) cubic interpolation (legacy) (when object 208En bit8=0).

The interpolation mode is selected with Interpolation sub-mode select object. The sub-mode can be changed only when
the drive is in Interpolation inactive state.

Each change of the interpolation mode will trigger the reset of the buffer associated with the interpolated position mode
(because the physical memory available is the same for both the sub-modes, size of each data record is different).

Object description:

Index 60CO0n
Name Interpolation sub mode select
Object code VAR
Data type INTEGER16
Entry description:
Access RW
PDO mapping Possible
Value range =215 .. 2151
Default value 0
Data description:
Profile code Profile type
-32768 ... -2 Manufacturer specific (reserved)
1 PVT (Position — Velocity — Time) cubic
interpolation
0 Linear Interpolation or PT (Position —
Time)
+1...4+32767 Reserved

© Technosoft 2019 121 iPOS CANopen Programming

9.2.2 Object 60C1n: Interpolation data record

The Interpolation Data Record contains the data words that are necessary to perform the interpolation algorithm. The
number of data words in the record is defined by the interpolation data configuration.

Object description:
Index 60C1n
Name Interpolation data record
Object code ARRAY
Number of elements 2
Data Type Interpolated Mode dependent
Entry description
Sub-index 01n
Description X1: the first parameter of ip function
Access RW
PDO mapping Possible
Value range Interpolated Mode dependent

Default value -

Sub-index 02n
- X2: the second parameter of ip
Description f .
unction
Access RW
PDO mapping Possible
Value range Interpolated Mode dependent

Default value -

Description of the sub-indexes:
X1 and X2 form a 64-bit data structure as defined below:

9.2.21 a) For linear interpolation (standard DS402 implementation)

To work with this mode, object 208Eh bit8 must be 1. The default value of this bit is 1 with the current iPOS
templates.

There are 2 parameters in this mode:
Position — a 32-bit long integer value representing the target position (relative or absolute). Unit - position increments.
— the Linear interpolation position command is received in object 60C1h sub-index1; sub-index2 is not used
Time — the time is defined in object 60C2h.
The position points should be sent in a synchronous RxPDO at fixed time intervals defined in object 60C2h.
60C1, Sub-index 1

rrrrrrryprrrrrrryrrrrrrr [rrrrrrrT

Position
) N N N

Byte 3 Byte 2 Byte 1 Byte 0

Figure 9.2.1. Linear interpolation point 32-bit data structure

9.2.2.2 b) For PT (Position —Time) linear interpolation (legacy).

To work with this mode, object 208E bit8 must be 0. The default value of this bit is 1 with the current iPOS
templates.

There are 3 parameters in this mode:
Position — a 32-bit long integer value representing the target position (relative or absolute). Unit - position increments.
Time — a 16-bit unsigned integer value representing the time of a PT segment. Unit - position / speed loop samplings.

Counter — a 7-bit unsigned integer value representing an integrity counter. It can be used in order to have a feedback
of the last point sent to the drive and detect errors in transmission.

In the example below Position[7...0] represents bits 0..7 of the position value.

© Technosoft 2019 122 iPOS CANopen Programming

Byte 0 Position [7...0]
Byte 1 Position [15...8]
Byte 2 Position [23...16]
Byte 3 Position [31...24]
Byte 4 Time [7...0]"
Byte 5 Time [15...8]"
Byte 6 Reserved
Byte 7 Counter[6...0] Reserved
60C1, Sub-index 2 60C1, Sub-index 1
TIYtYT.YtT rrrrrrryprrrrrrryrrrrrrrprrrrrrr[rrrrrrr[rrrrrrr[rrrrrrrT
ntegri 5
outer | [Reserved Time Position
) | N Y A) A N I v
Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Figure 9.2.2. PT interpolation point 64-bit data structure

Remarks:
- The integrity counter is written in byte 3 of 60C1n Sub-index 2, on the most significant 7 bits (bit 1 to bit 7).

- The integrity counter is 7 bits long, so it can have a value up to 127. When the integrity counter reaches 127, the next
value is 0

9.2.2.3 c) For PVT (Position — Velocity — Time) cubic interpolation
To work with this mode, object 208Eh bit8 must be 0. The default value of this bit is 1 with the current iPOS
templates.
There are 4 parameters in this mode:
Position — a 24-bit long integer value representing the target position (relative or absolute). Unit - position increments.

Velocity — a 24-bit fixed value representing the end point velocity (16 MSB integer part and 8 LSB fractional part). Unit
- increments / sampling

Time — a 9-bit unsigned integer value representing the time of a PVT segment. Unit - position / speed loop samplings.

Counter — a 7-bit unsigned integer value representing an integrity counter. It can be used in order to have a feedback
of the last point sent to the drive and detect errors in transmission.

In the example below Position 0 [7...0] represents bits 0..7 of the position value.

Byte 0 Position 0 [7...0]

Byte 1 Position 1 [15...8]

Byte 2 Velocity 0 [15...8]

Byte 3 Position 2 [23...16]

Byte 4 Velocity 1 [23...16]

Byte 5 Velocity 2 [31...24]

Byte 6 Time [7...0]

Counter[6...0] Time[8]

Byte 7 bit7 - bit1 bit0

60C1, Sub-index 2 60C1, Sub-index 1

Integrity Time | Velocity 2|Velocity 1|Position 2| Velocity 0| Position 1|Position 0

\C\O\ur\]te\r\ I e e e I v
Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0
%k—/ %’_/

Velocity Velocity
integer part fractional part

Figure 9.2.3. PVT interpolation point 64-bit data structure

Remarks:
- The integrity counter is written in byte 3 of 60C1n Sub-index 2, on the most significant 7 bits (bit 1 to bit 7).

- The integrity counter is 7 bits long, so it can have a value up to 127. When the integrity counter reaches 127, the
next value is 0.

' If object 207An Interpolated position 15t order time is used, these bits will we overwritten with the value defined in it

© Technosoft 2019 123 iPOS CANopen Programming

9.2.3 Object 2072n: Interpolated position mode status

The object provides additional status information for the interpolated position mode.

Object description:

Entry description:

Index 2072n

Name Interpolated position mode status
Object code VAR

Data type UNSIGNED16

Access RO

PDO mapping Possible

Value range UNSIGNED16

Default value -

Table 9.2.1 — Interpolated position mode status bit description

Bit Value Description
15 0 Buffer is not empty
1 Buffer is empty — there is no point in the buffer.
0 Buffer is not low
14 1 Buffer is low — the number of points from the buffer is equal or less than the low
limit set using object 2074.
13 0 Buffer is not full
1 Buffer is full — the number of points in the buffer is equal with the buffer dimension.
0 No integrity counter error
12 Integrity counter error. If integrity counter error checking is enabled and the
1 integrity counter sent by the master does not match the integrity counter of the
drive.
0 Valid only for PVT (cubic interpolation): Drive has maintained interpolated
11 position mode after a buffer empty condition (the velocity of the last point was 0).
1 Valid only for PVT (cubic interpolation): Drive has performed a quick stop after a
buffer empty condition because the velocity of the last point was different from 0
10...7 Reserved
6...0 Current integrity counter value

Remark: when a status bit changes from this object, an emergency message with the code OxFF01 will be generated.

This emergency message will have mapped object 2072, data onto bytes 3 and 4.
The Emergency message contains of 8 data bytes having the following contents:

0-1

2 3-4 5-7

Emergency
Code (0xFF01)

Error

Error Register Interpolated position status Manufacturer specific error

(Object 1001n) (Object 2072n) field

To disable the sending of PVT emergency message with ID OxFF01, the setup variable PVTSENDOFF must be set to

1.

9.24 Object 2073h: Interpolated position buffer length

Through Interpolated position buffer length object you can change the default buffer length. When writing in this
object, the buffer will automatically reset its contents and then re-initialize with the new length. The length of the buffer
is the maximum number of interpolation data that can be queued, and does not mean the number of data locations

physically available.

Remark: It is NOT allowed to write a “0” into this object.

Object description:

Entry description:

Index 2073n

Name Interpolated position buffer length
Object code VAR

Data type UNSIGNED16

Access WO

PDO mapping No

Value range UNSIGNED16

Default value 7

© Technosoft 2019

124 iPOS CANopen Programming

9.2.5 Object 2074n: Interpolated position buffer configuration

Through this object you can control more in detail the behavior of the buffer.

Object description:
Index 2074n
N Interpolated position buffer
ame ! -
configuration
Object code VAR
Data type UNSIGNED16
Entry description:
Access \e)
PDO mapping No
Value range UNSIGNED16
Default value -
Table 9.2.2 — Interpolated position buffer configuration
Bit Value Description
15 0 Nothing
1 Clear buffer and reinitialize buffer internal variables
14 0 Enable the integrity counter error checking
1 Disable the integrity counter error checking
13 0 No change in the integral integrity counter
1 Change internal integrity counter with the value specified in bits 0 to 6
If absolute positioning is set (bit 6 of Controlword is 0), the initial position is read
0 from object 2079. It is used to compute the distance to move up to the first PVT
point.
(2 If absolute positioning is set (bit 6 of Controlword is 0), the initial position is the
1 current position demand value. It is used to compute the distance to move up to
the first PVT point.
1.8 New parameter for buffer low signaling. When the number of entries in the buffer
is equal or less than buffer low value, bit 14 of object 2072 will set.
7 0 No change in the buffer low parameter
1 Change the buffer low parameter with the value specified in bits 8 to 11
6...0 New integrity counter value

9.2.6 Object 2079n: Interpolated position initial position

Through this object, you can set an initial position for absolute positioning in order to be used to compute the distance
to move up to the first point. It is given in position units.

Object description:

Index 2079
Name Interpolated position initial position
Object code VAR
Data type INTEGER32
Entry description:
Access RW
PDO mapping Possible
Value range INTEGER32
Default value 0

9.2.7 Object 207An: Interpolated position 15t order time

Through this object, you can set the time in a PT (Position — Time) Linear Interpolation mode. By setting a value in this
object, there is no need to send the time together with the position and integrity counter in Object 60C1h: Interpolation
data record. This object is disabled when it is set with 0. It is given in [U which is by default 0.8ms for steppers and 1ms
for the other configurations.

Object description:
Index 207An
Name Interpolated position 15t order time
Object code VAR
Data type UNSIGNED16
© Technosoft 2019 125 iPOS CANopen Programming

Entry description:

Access RW

PDO mapping Yes

Value range UNSIGNED16
Default value 0

9.2.8

Loading the interpolated points

The points can be loaded only in Legacy interpolation mode (object 208En bit8 must be 0 and its default is 1).

If the integrity counter is enabled, the drive considers and loads a valid IP point when it receives a new valid integrity
counter number. If the drive receives interpolation data with the same integrity number, it will ignore the point and
send an emergency message with the code OxFFO1. If it receives a lower or a +2 higher integrity number, it will ignore
the data and send an emergency message with code OxFF01 and Object 207Ah: Interpolated position 1st order time
mapped on bytes 4 and 5 showing and integrity counter error. This error will be automatically reset when the data with
correct integrity number will be received. The 7 bit integrity counter can have values between 0 and 127. Therefore,
when the counter reaches the value 127, the next logical value is 0.

After receiving each point, the drive calculates the trajectory it has to execute. Because of this, the points must be loaded
after the absolute/relative bit is set in Controlword.

A correct interpolated PT/PVT motion would be like this:

Enter mode 07 in Modes of Operation

set the IP (Interpolated Position) buffer size

Clear the buffer and reinitialize the integrity counter

Set in Controlword the bit for absolute or relative motion

If the motion is absolute, set in 2079 the actual position of the drive (read from object 6063n)
If the motion is PT, set in object 207 An a fixed time interval if not supplied in 60C1 sub-index2
Load the first IP points

Start the motion by toggling from 0 to 1 bit4 in Controlword

Monitor the interpolated status for buffer low warning (an emergency message will be sent automatically
containing the interpolated status when one of the status bits changes)

Load more points until buffer full bit is active

¢ Return to monitoring the buffer status and load points until the profile is finished

9.3 Linear interpolation example

To work with this mode, object 208En bit8 must be 1. The default value of this bit is 1, so there is no need to change it.
This example is identical with the Cyclic Synchronous Position Mode example with the following changes:

- the modes of operation 6060r must be set = 7 instead of 8

- object 60C1hn sub-index 1 must be used instead of object 607An.
All the other commands and behavior is the same.

9.4 PT absolute movement example

Execute an absolute PT movement.
Remarks: Because this is a demo for a single axis, the synchronization mechanism is not used here.
To work with this mode, object 208E bit8 must be 0. The default value of this bit is 1.
1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID

Data

0

01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the

shutdown command via Controlword associated PDO.

Send the following message:

COB-ID

Data

206

06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID

Data

206

07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

© Technosoft 2019

iPOS CANopen Programming

Send the following message:

COB-ID

Data

206

OF 00

5. Enable the legacy interpolated mode. Set bit 8 of object 208En to 0.

Send the following message (SDO access to object 208En sub-index 0, 16-bit value 0):

COB-ID

Data

606

2B 8E 20 00 00 00 00 00

6. Disable the RPDO3. Write zero in object 1602n sub-index 0, this will disable the PDO.

Send the following message (SDO access to object 1602, sub-index 0, 8-bit value 0):

COB-ID

Data

606

2F 0216 00 00 00 00 00

7. Map the new objects.
Write in object 1602h sub-index 1 the description of the interpolated data record sub-index 1:
Send the following message (SDO access to object 1602, sub-index 1, 32-bit value 60C10120n):

COB-ID

Data

606

230216 0120 01 C1 60

Write in object 1602h sub-index 2 the description of the interpolated data record sub-index 2:

Send the following message (SDO access to object 1602, sub-index 2, 32-bit value 60C10220n):

COB-ID

Data

606

23 0216 02 20 02 C1 60

8. Enable the RPDO3. Set the object 1602n sub-index 0 with the value 2.

Send the following message (SDO access to object 1602, sub-index 0, 8-bit value 2):

COB-ID

Data

606

2F 02 16 00 02 00 00 00

9. Mode of operation. Select interpolation position mode.

Send the following message (SDO access to object 6060n, 8-bit value 7x):

COB-ID

Data

606

2F 60 60 00 07 00 00 00

10. Interpolation sub mode select. Select PT interpolation position mode.

Send the following message (SDO access to object 60CO0n, 16-bit value 0000k):

COB-ID

Data

606

2B C0 60 00 00 00 00 00

11. Interpolated position buffer length. Set the buffer length to 12. The maximum length is 15.

Send the following message (SDO access to object 207 3n, 16-bit value Ch):

COB-ID

Data

606

2B 73 20 00 0C 00 00 00

12. Interpolated position buffer configuration. By setting the value A001, the buffer is cleared and the integrity
counter will be set to 1. Send the following message (SDO access to object 2074n, 16-bit value A001n):

COB-ID

Data

606

2B 74 20 00 01 A0 00 00

13. Interpolated position initial position. Set the initial position to 0.5 rotations. By using a 500 lines incremental
encoder the corresponding value of object 2079n expressed in encoder counts is (10004) 3E8h. By using the
settings done so far, if the final position command were to be 0, the drive would travel to (Actual position —

Send the following message (SDO access to object 2079n, 32-bit value 03E8):

1000).
COB-ID Data
606 23 79 20 00 E8 03 00 00

14. Send the 15t PT point.
Position= 20000 IU (0x00004E20) 1IU = 1 encoder pulse
Time = 1000 IU (0x03ES8) 11U = 1 control loop = 1ms by default
IC =1 (0x01) IC=Integrity Counter

The drive motor will do 10 rotations (20000 counts) in 1000 milliseconds.

© Technosoft 2019

127 iPOS CANopen Programming

Send the following message:

COB-ID

Data

406

20 4E 00 00 E8 03 00 02

15. Send the 2" PT point.
Position= 30000 IU (0x00007530)
Time =2000 IU (0x07D0)

IC = 2 (0x02)

Send the following message:

COB-ID Data
406 30750000 DO 07 00 04

16. Send the 3™ PT point.
Position= 2000 IU (0x000007DO0)
Time =1000 IU (0X03E8)

IC = 3 (0x03)

Send the following message:

COB-ID Data
406 D0 07 00 00 E8 03 00 06

17. Send the last PT point.

Set X1=00000000+ (0 counts); X2=080001F4 (IC=4 (0x08), time =500 (0x01F4))
Position= 0 IU (0x00000000)
Time =500 IU (Ox01F4)
IC =4 (0x04)

Send the following message:

COB-ID Data
406 00 00 00 00 F4 01 00 08

18. Start an absolute motion.

Send the following message:
COB-ID Data
206 1F 00

After the sequences are executed, if the drive actual position before starting the motion was 0, now it should be -1000
counts because of Step 12.

9.5 PVT absolute movement example

Execute an absolute PVT movement. The PVT position points will be given as absolute positions.
Remarks: Because this is a demo for a single axis the synchronization mechanism is not used here.
To work with this mode, object 208En bit8 must be 0. The default value of this bit is 1.
1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data
0 01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data
206 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID

Data

206

07 00

© Technosoft 2019

128 iPOS CANopen Programming

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID

Data

206

OF 00

5. Enable the legacy interpolated mode. Set bit 8 of object 208En to 0.
Send the following message (SDO access to object 208E sub-index 0, 16-bit value 0):

COB-ID

Data

606

2B 8E 20 00 00 00 00 00

6. Disable the RPDO3. Write zero in object 1602n sub-index 0, this will disable the PDO.

Send the following message (SDO access to object 1602, sub-index 0, 8-bit value 0):

COB-ID

Data

606

2F 02 16 00 00 00 00 00

7. Map the new objects.
a) Write in object 1602n sub-index 1 the description of the interpolated data record sub-index 1:
Send the following message (SDO access to object 1602n sub-index 1, 32-bit value 60C10120k):

COB-ID Data
606 230216 01 20 01 C1 60

b) Write in object 1602, sub-index 2 the description of the interpolated data record sub-index 2:

Send the following message (SDO access to object 1602, sub-index 2, 32-bit value 60C10220n):

COB-ID Data
606 230216 02 20 02 C1 60

8. Enable the RPDO3. Set the object 1602n sub-index 0 with the value 2.

Send the following message (SDO access to object 1602, sub-index 0, 8-bit value 2):

COB-ID Data
606 2F 02 16 00 02 00 00 00

9. Mode of operation. Select interpolation position mode.

Send the following message (SDO access to object 6060n, 8-bit value 7x):

COB-ID Data
606 2F 60 60 00 07 00 00 00

10. Interpolation sub mode select. Select PVT interpolation position mode.

Send the following message (SDO access to object 60CO0On, 16-bit value FFFFh):

COB-ID Data
606 2B C0 60 00 FF FF 00 00

11. Interpolated position buffer length. Set the buffer length to 15. The maximum length is 15.

Send the following message (SDO access to object 2073n, 16-bit value Fn):
COB-ID Data
606 2B 73 20 00 OF 00 00 00

12. Interpolated position buffer configuration. By setting the value BOOOs, the buffer is cleared and the integrity
counter will be set to 0.

Send the following message (SDO access to object 2074n, 16-bit value BOOO):

COB-ID Data
606 2B 74 20 00 00 BO 00 00

13. Send the 15t PVT point.
Position = 88 IU (0x000058) 11U = 1 encoder pulse
Velocity = 3.33 IU (0x000354) 11U = 1 encoder pulse/ 1 control loop
Time = 551U (0x37) 11U = 1 control loop = 1ms by default
IC = 0 (0x00) IC=Integrity Counter

Send the following message:

129 iPOS CANopen Programming

© Technosoft 2019

COB-ID Data
406 58 00 54 00 03 00 37 00

14. Send the 2" PVT point.
Position = 370 IU (0x000172)
Velocity = 6.66 IU (0xO006A8)
Time =55 IU (0x37)

IC =1 (0x01)

Send the following message:

COB-ID Data
406 72 01 A8 00 06 00 37 02

15. Send the 3™ PVT point.
Position = 2982 IU (0x000BAG)
Velocity = 6.66 IU (0x0006A8)
Time =390 IU (0x186)

IC =2 (0x02)

Send the following message:

COB-ID Data
406 A6 0B A8 00 06 00 86 05

16. Send the 4t" PVT point.
Position = 5631 IU (0x0015FF)
Velocity = 6.66 IU (0x0006A8)
Time =400 IU (0x190)

IC = 3 (0x03)

Send the following message:

COB-ID Data
406 FF 15 A8 00 06 00 90 07

17. Send the 5" PVT point.
Position = 5925 U (0x001725)
Velocity = 3.00 IU (0x000300)
Time =60 IU (0x3C)

IC = 4 (0x04)

Send the following message:

COB-ID Data
406 2517 00 00 03 00 3C 08

18. Send the 6" PVT point.
Position = 6000 IU (0x001770)
Velocity = 0.00 IU (0x000000)
Time =50 IU (0x32)

IC = 5 (0x05)

Send the following message:

COB-ID Data
406 70 17 00 00 00 00 32 0A

19. Send the 7" PVT point.
Position = 5127 |U (0x001407)
Velocity = -7.5 IU (OXFFF880)
Time =240 IU (0xF0)

IC = 6 (0x06)

Send the following message:

© Technosoft 2019 130

iPOS CANopen Programming

COB-ID Data
406 07 14 80 00 F8 FF F0O 0C

20. Send the 8" PVT point.
Position = 3115 [U (0x000C2B)
Velocity = -13.33 IU (OxFFF2AB)
Time =190 IU (0xBE)

IC =7 (0x07)

Send the following message:

COB-ID Data
406 2B 0C AB 00 F2 FF BE OE

21. Send the 9t PVT point.
Position = -1686 1U (OXFFF96A)
Velocity = -13.33 IU (OXFFF2AB)
Time =360 IU (0x168)

IC = 8 (0x08)

Send the following message:

COB-ID Data
406 6A F9 AB FF F2 FF 68 11

22. Send the 10" PVT point.
Position = -7145 1U (OxFFE417)
Velocity = -13.33 IU (OXFFF2AB)
Time =4101U (0x19A)

IC = 9 (0x0A)

Send the following message:

COB-ID Data
406 17 E4ABFFF2FF9A 13

23. Send the 11" PVT point.
Position = -9135 IU (OxFFDC51)
Velocity = -7.4 1U (OxFFF899)
Time =190 IU (0xBE)

IC =10 (0x0A)

Send the following message:

COB-ID Data
406 51 DC 99 FF F8 FF BE 14

24. Send the 12t PVT point. The last.
Position = -10000 IU (OxFFD8FO)
Velocity = -7.4 1U (0x000000)

Time =240 IU (OxF0)
IC =11 (0x0B)

Send the following message:

COB-ID Data
406 FO0 D8 00 FF 00 00 FO 16

25. Start an absolute motion.

Send the following message:

COB-ID Data
206 1F 00

The PVT motion should be like the one below.

© Technosoft 2019 131

iPOS CANopen Programming

a 05 1 1.5 2 25

Time[ILT) x1e3d
Pasition[rof] T Relooity]IU]
| Pasitionfrot]

The motor should rotate 3 positive rotations and another 8 negatively (for a 500 lines encoder). If the initial position
before the motion was 0, the final position should be -10000 IU (-5 rotations). All points should be executed within 2.64s,
considering the default time base is 1ms.

9.6 PVT relative movement example

Execute a relative PVT movement. The PVT position points will be given as a difference between next and last position.
Remarks: Because this is a demo for a single axis the synchronization mechanism is not used here.

To work with this mode, object 208En bit8 must be 0. The default value of this bit is 1.
1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data
0 01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data
206 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID

Data

206

07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID

Data

206

OF 00

5. Enable the legacy interpolated mode. Set bit 8 of object 208Eh to 0.
Send the following message (SDO access to object 208E sub-index 0, 16-bit value 0):

COB-ID

Data

606

2B 8E 20 00 00 00 00 00

6. Disable the RPDO3. Write zero in object 1602n sub-index 0, this will disable the PDO.

Send the following message (SDO access to object 1602, sub-index 0, 8-bit value 0):

COB-ID

Data

606

2F 02 16 00 00 00 00 00

7. Map the new objects.
a) Write in object 1602, sub-index 1 the description of the interpolated data record sub-index 1:
Send the following message (SDO access to object 1602n sub-index 1, 32-bit value 60C10120n):

COB-ID Data
606 230216 01 20 01 C1 60

b) Write in object 1602nh sub-index 2 the description of the interpolated data record sub-index 2:

Send the following message (SDO access to object 1602, sub-index 2, 32-bit value 60C10220n):

© Technosoft 2019 132 iPOS CANopen Programming

COB-ID Data
606 23 0216 02 20 02 C1 60

8. Enable the RPDO3. Set the object 1602x sub-index 0 with the value 2.

Send the following message (SDO access to object 1601x sub-index 0, 8-bit value 2):

COB-ID Data
606 2F 02 16 00 02 00 00 00

9. Mode of operation. Select interpolation position mode.

Send the following message (SDO access to object 6060n, 8-bit value 7h):

COB-ID Data

606 2F 60 60 00 07 00 00 00

10. Set the relative motion bit. Set in Controlword mapped in RPDO1 the value 4Fn. For an absolute motion, set
OFh but the example points will not apply.

Remark: if the relative motion bit is not set in Controlword before the PVT points are loaded, the trajectory will not

be calculated correctly.

Send the following message:

COB-ID Data
206 4F 00

11. Interpolation sub mode select. Select PVT interpolation position mode.

Send the following message (SDO access to object 60COn, 16-bit value FFFF):

COB-ID Data
606 2B C0 60 00 FF FF 00 00

12. Interpolated position buffer length. Set the buffer length to 12. The maximum length is 15.

Send the following message (SDO access to object 2073n, 16-bit value Cr):

COB-ID Data

606 2B 73 20 00 0C 00 00 00
13. Interpolated position buffer configuration. By setting the value A001, the buffer is cleared and the integrity
counter will be set to 1. Send the following message (SDO access to object 2074, 16-bit value A001n):

COB-ID Data

606 2B 74 20 00 01 A0 00 00
14. Interpolated position initial position. Set the initial position to 0 rotations. The object should receive the
drives actual position in Internal Units which can be read from object 6063n or 6062n when using steppers in

open loop.
Send the following message (SDO access to object 2079n, 32-bit value On):
COB-ID Data
606 2379 20 00 00 00 00 00

15. Send the 15t PVT point.
Position = 400 IU (0x000190) 11U = 1 encoder pulse
Velocity = 3.00 IU (0x000300) 11U = 1 encoder pulse/ 1 control loop
Time =250 IU (0xFA) 11U = 1 control loop = 1ms by default
IC =1 (0x01) IC=Integrity Counter

Send the following message:

COB-ID Data
406 90 01 00 00 03 00 FA 02

16. Send the 2" PVT point.
Position = 1240 |U (0x0004D8)
Velocity = 6.00 IU (0x000600)
Time =250 U (0xFA)

IC =2 (0x02)

Send the following message:

COB-ID Data
406 D8 04 00 00 06 00 FA 04

17. Send the 3™ PVT point.

© Technosoft 2019 133 iPOS CANopen Programming

Position = 1674 U (0x00068A)
Velocity = 6.00 U (0x000600)
Time =250 1U (OxFA)

IC = 3 (0x03)

Send the following message:

COB-ID Data
406 8A 06 00 00 06 00 FA 06

18. Send the 4" PVT point.
Position = 1666 1U (0x000682)
Velocity = 6.00 1U (0x000600)
Time =250 IU (0xFA)

IC =4 (0x04)

Send the following message:

COB-ID Data
406 82 06 00 00 06 00 FA 08

19. Send the 5% PVT point.
Position = 1240 IU (0x0004D8)
Velocity = 3.00 IU (0x000300)
Time =250 1U (OxFA)

IC = 5 (0x05)

Send the following message:

COB-ID Data
406 D8 04 00 00 03 00 FA OA

20. Send the last PVT point.
Position = 410 IU (0x00019A)
Velocity = 0.00 IU (0x000000)
Time =250 U (0xFA)

IC = 6 (0x06)

Send the following message:

COB-ID Data
406 9A 01 00 00 00 00 FA OC

21. Start a relative motion.

Send the following message:

COB-ID Data
206 5F 00

The PVT motion should be like the one below.

x1eld [YR]

a 0.5 1 15

Time[s)
Paosition[IL TRvelocityIU]

If the initial position before the motion was 0, the final position should be 6630 U (3.315 rotation for a 500line encoder).
All points should be executed in 1.5s, considering the default time base is 1ms.

© Technosoft 2019 134 iPOS CANopen Programming

10 Cyclic Synchronous Position mode (CSP)

10.1 Overview

The overall structure for this mode is shown in Figure 10.1.1. With this mode, the trajectory generator is located in the
control device, not in the drive device. In cyclic synchronous manner, it provides a target position to the drive device,
which performs position control, velocity control and torque control. Measured by sensors, the drive provides actual
values for position, velocity and torque to the control device.

Target (607A,) Position Velocity Torque M
position or | control | control | control
(60C1.01,)

A A Iy

Current actual value

(6064,)

Figure 10.1.1. Cyclic synchronous position mode overview

The Target Position for the CSP mode may be received into object 607 An or into object 60C1x sub-index 01.

10.1.1 Controlword in Cyclic Synchronous Position mode (CSP)

MSB LSB
See See
6040 Halt 6040 Abs / rel Reserved Reserved See 6040n
15 9 8 7 6 5 4 3 0

Table 10.1.1 — Controlword bits description for Cyclic Synchronous Position Mode

Name Value Description
Abs / rel 0 Abso!ute pOS.I.tlon mode
1 Relative position mode

In absolute position mode, the drive will always travel to the absolute position given to object 607 An . This is the standard
mode.

In Relative position mode, the drive will add to its current position the value received in object 607An. By sending this
value periodically and setting the correct interpolation period time in object 60C2s, it will be like working in Cyclic
Synchronous Velocity mode (CSV).

10.1.2 Statusword in Cyclic Synchronous Position mode (CSP)

MSB LSB
Following Target position
See 6041n error ignored See 6041n Reserved See 6041n
15 14 13 12 11 10 9 0
Table 10.1.2 — Statusword bit description for Cyclic Synchronous Position mode
Name Value Description
. 0 Reserved
Bit 10 1 Reserved
Target e
position 0 Target position ignored
ignored 1 Target position shall be used as input to position control loop
Following 0 No following error
error 1 Following error occurred

© Technosoft 2019 135 iPOS CANopen Programming

10.2 Cyclic Synchronous Position Mode Objects

10.2.1

Object 60C2x: Interpolation time period

The Interpolation time period indicates the configured interpolation cycle time. Its value must be set with the time
value of the CANopen master communication cycle time and sync time in order for the Cyclic Synchronous Position
mode to work properly. The interpolation time period (sub-index 01n) value is given in 1Qinterpolation time index) g(gecond).

The interpolation time index (sub-index 02h) is dimensionless.

Example: to set a communication cycle time of 4ms, 60C2h sub-index 01n = 4 and 60C2;, sub-index 02n = -3. The result

is 4ms = 4*103.

Remark: due to the limitations of the CAN network, it is recommended that the interpolation time period should not be

set lower than 4 ms.

Object description:

Entry description:

Index 60C2n

Name Interpolation time period
Object code ARRAY

Number of elements 2

Data Type Interpolation time period record
Sub-index 00n

Description Number of sub-indexes
Access RO

PDO mapping No

Default value 2

Sub-index 01n

Description Interpolation time period value
Access RW

PDO mapping Possible

Value range Unsigned8

Default value 1

Sub-index 02n

Description Interpolation time index
Access RW

PDO mapping Possible

Value range INTEGERS, (-128 to +63)

Default value

-3

10.2.2 Object 2086n: Limit speed for CSP?

This object is used to set a maximum velocity during CSP mode of operation.

Object description:

Entry description:

If 2086n = 1, the limit is active. During CSP mode, the maximum velocity will be the one defined in object 608 1.
Remark: If 6081n = 0 and 2086n =1, during CSP mode, the motor will not move when it receives new position commands

Index 2086n

Name Limit speed/acceleration for CSP
Object code VAR

Data type INTEGER16

Access RW

PDO mapping Yes

Value range UNSIGNED16

Default value 0000n

because its maximum velocity is limited to 0.

' Available only with F514x firmware.

© Technosoft 2019

136

iPOS CANopen Programming

10.3 Cyclic Synchronous Position Mode example

Short description of the example:

- Start the node

- Remap RPDO1 and set it as synchronous
- Remap TPDO1 and set it as synchronous
- Set CSP mode in Modes of Operation

- Set Operation Enable. The handshake between what is commanded into Controlword and what is read from
Statusword will be described in detail

- Send a typical CSP motion command.

Step 1 starts the remote node 6, which means the PDOs will be enabled.

1. Start remote node. Send an NMT message to start the node id 06.

Send the following message:

COB-ID Data
0 01 06

Remark: if 00 is sent instead of 06, all nodes in the network will be enabled.

Steps 2 and 3 set the interpolation time to 10ms.

The interpolation time needs to be set in the object 60C2n. Sub-index 1 holds the interpolation time period value
(i.e. 10 for 10ms) and sub-index 2 holds the interpolation time index (i.e. -3 for ms = 10*-3 s).

The interpolation time has to be equal to the SYNC period and the period of the synchronous RPDO containing the
position command.

2. Interpolation time period value. Set the interpolation time value to 10 (Ox0A).

Send the following message (SDO write access to object 60C2h sub-index 1 the 8-bit value 0An):

COB-ID

Data

606

2F C2 60 01 0A

3. Interpolation time index. Set the interpolation time index value to -3 (OxFD).

Send the following message (SDO write access to object 60C2h sub-index 2 the 8-bit value FDn):

COB-ID

Data

606

2F C2 6002 FD

Steps 4 to 7 remap RPDO1 to receive Controlword (6040n, 16bit) and Target Position (607 An, 32bit).

4. Disable RPDO1 mapping. To reconfigure any RPDO mapping, sub-index 0 of the corresponding mapping
parameter object must be set to 0 in order to disable the PDO mapping.

Send the following message (SDO write access to object 1600n sub-index 0 the 8-bit value 00n):

COB-ID Data
606 2F 00 16 00 00

5. Map Controlword 6040, to RPDO1 sub-index 1.

Send the following message (SDO write access to object 1600n sub-index 1 the 32-bit value 60400010n):
COB-ID Data

606 23 0016 01 10 00 40 60
6. Map Target Position 607An to RPDO1 sub-index 2.

Send the following message (SDO write access to object 1600n sub-index 2 the 32-bit value 607A0020n):
COB-ID Data
606 23 00 16 02 20 00 7A 60

Remark: instead of 607 An, object 60C1n sub-index 01 may also be mapped to receive the same position command.
In this case, 60C10120n must be written to sub-index 2 of object 1600n.

7. Enable RPDO1 mapping. To enable any RPDO mapping, sub-index 0 of the corresponding mapping
parameter object must be set with the number of sub-indexes defined in it. In this case, there are 2.

Send the following message (SDO write access to object 1600n sub-index 0 the 8-bit value 02n):

© Technosoft 2019 137 iPOS CANopen Programming

COB-ID

Data

606

2F 00 16 00 02

Steps 8 to 11 set RPDO1 as synchronous.

8. Disable RPDO1. To change any RPDO Communication parameters, sub-index 1 bit 31 must be set. It is
recommended that only bit 31 is set and the number already defined inside should be kept.

Example: the sub-index 1 value is 0x206 which is the RPDO1 COB ID for axis 6 (0x200 + Axis ID). From this
number, only bit 31 should be set. It means that instead of 0x206, 0x80000206 should be written.

Send the following message (SDO write access to object 1400n sub-index 1 the 32-bit value 80000206w):

COB-ID

Data

606

23 00 14 01 06 02 00 80

9. Set RPDO1 as synchronous, with the period of 1 SYNC. Write 1 into sub-index 2 Transmission type. RPDO1
data will be processed after the reception of each SYNC.

Send the following message (SDO write access to object 1400 sub-index 2 the 8-bit value 01n):

COB-ID

Data

606

2F 00 14 02 01

10. Enable RPDO1. To enable a RPDO, bit 31 of sub-index 1 must be reset without interfering with the other bits.
For the RPDO1 of axis 6, the COB ID should be (0x200 + axis ID). It means 0x206 should be written.

Send the following message (SDO write access to object 1400 sub-index 1 the 32-bit value 00000206+):

COB-ID

Data

606

23 0014 01 06 02 00 00

Steps 11 to 14 remap TPDO1 to send Statusword (604 1n, 16bit) and Position actual value (6064n, 32bit).

11. Disable TPDO1 mapping. To reconfigure any TPDO mapping, sub-index 0 of the corresponding mapping
parameter object must be set to 0 in order to disable the PDO mapping.

Send the following message (SDO write access to object 1A00n sub-index 0 the 8-bit value 00n):

COB-ID

Data

606

2F 00 1A 00 00

12. Map Statusword 6041, to TPDO1 sub-index 1.
Send the following message (SDO write access to object 1A00n sub-index 1 the 32-bit value 60410010n):

COB-ID

Data

606

23 001A 0110 00 41 60

13. Map Position actual value 60641 to TPDO1 sub-index 2.

Send the following message (SDO write access to object 1A00n sub-index 2 the 32-bit value 60640020k):

COB-ID

Data

606

23 00 1A 02 20 00 64 60

14. Enable TPDO1 mapping. To enable any TPDO mapping, sub-index 0 of the corresponding mapping
parameter object must be set with the number of sub-indexes defined in it. In this case, there are 2.

Send the following message (SDO write access to object 1A00n sub-index 0 the 8-bit value 02n):

COB-ID

Data

606

2F 00 1A 00 02

Steps 15 to 17 set TPDO1 as synchronous.

15. Disable TPDO1. To change any TPDO Communication parameters, sub-index 1 bit 31 must be set. It is
recommended that only bit 31 is set and the number already defined inside should be kept.

Example: the sub-index 1 value is 0x186 which is the TPDO1 COB ID for axis 6 (0x180 + Axis ID). From this
number, only bit 31 should be set. It means that instead of 0x186, 0x80000186 should be written.

Send the following message (SDO write access to object 1800n sub-index 1 the 32-bit value 80000186n):

COB-ID

Data

606

23 0018 01 86 01 00 80

© Technosoft 2019

138 iPOS CANopen Programming

16. Set TPDO1 as synchronous, with the period of 1 SYNC. Write 1 into sub-index 2 Transmission type. TPDO1
data is updated when the SYNC is received, and then TPDO1 is sent as soon as possible.
Send the following message (SDO write access to object 1800n sub-index 2 the 8-bit value 01n):
COB-ID Data
606 2F 00 18 02 01

17. Enable TPDO1. To enable a TPDO, bit 31 of sub-index 1 must be reset without interfering with the other bits.
For the TPDO1 of axis 6, the COB ID should be (0x180 + axis ID). It means 0x186 should be written.
Send the following message (SDO write access to object 1800 sub-index 1 the 32-bit value 00000186n):

COB-ID Data
606 230018 01 86 01 00 00

Step 18 sets CSP mode into the Modes of operation object.
18. Set modes of operation to CSP. Write 0x08 into object 6060 to set the drive into CSP mode.

Remark: the drive will be in CSP mode only after in reaches the state Operation Enabled. This means that object
6061n (Modes of operation display) will show 8 (drive is in CSP mode), only after Operation Enabled has been
reached.

Send the following message (SDO write access to object 6060n sub-index 0 the 8-bit value 08n):

COB-ID Data
606 2F 60 60 00 08

Steps 19 to 21 bring the drive into Operation enabled state and also start the CSP mode motion.

Remark 1: from this point on, the master should send the SYNC messages at precisely 10ms (the same number
defined in 60C2:). Transmission of RPDO1 should also be started by the master.

Remark 2: the SYNC message is usually configured at the CANopen master start-up and can be sent from the
drive boot-up time. The configuration messages until this point can be sent in parallel with the SYNC messages.
Only after all the PDOs are configured as synchronous, the drive will use the SYNC signal for the PDOs.

19. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message (SYNC)

COB-ID Data
80 Null

This was the SYNC signal. It must be sent at precisely 10ms intervals. In this example it can also be sent
manually, to understand each command and what it does.

Send the following message (RPDO1)

COB-ID Data
206 06 00 00 00 00 00

The 0006 is the new value for Controlword, i.e. the command to enter Ready to switch on state.
The 00000000 is the position command.

Send the following message (SYNC)

COB-ID Data
80 Null

This was the SYNC signal. It must be sent at precisely 10ms intervals.

After each SYNC signal, the drive will send its TPDO1. To be able to change the next Controlword command
in RPDO1, ensure that the drive reaches Ready to switch on state by waiting for the TPDO1 with the following
content:

Wait to receive the following message (TPDO1)

COB-ID Data
186 00 00 00 00

The is the Statusword value. The value xx31n shows that the drive reached Ready fo switch on state. The
master may have to wait a few SYNCs and read the TPDOs multiple times until this value is reached (there are
also intermediary values)

The 00000000 is the Position actual value and can vary depending on the encoder reported position.

© Technosoft 2019 139 iPOS CANopen Programming

Warning: The master must always wait for the drive to reach the desired state programmed into Controlword by
checking the Statusword. No other command must be sent during this time. In this case, because the RPDOs are
synchronous, the RPDO1 must be sent continuously without changing the command in Controlword until the drive
reaches the desired state as reported into the Statusword.

20. Switch on. Change the node state from Ready to switch on to Switched on by sending the switch on command
via Controlword associated PDO.
Send the following message (SYNC)

COB-ID Data
80 Null

This was the SYNC signal. It must be sent at precisely 10ms intervals.

Send the following message (RPDO1)

COB-ID Data
206 07 00 00 00 00 00

The 0007 is the new value for Controlword, i.e. the command to enter Switched on state.

Send the following message (SYNC)

COB-ID Data
80 Null

This was the SYNC signal. It must be sent at precisely 10ms intervals.

After each SYNC signal, the drive will send its TPDO1. To be able to change the next Controlword command
in RPDO1, ensure that the drive reaches Switched on state by waiting for the TPDO1 with the following content:
Wait to receive the following message (TPDO1)

COB-ID Data
186 3382000000 00

The 8233 is the Statusword value. The value xx33n shows that the drive reached Switched on state. The
master may have to wait a few SYNCs and read the TPDOs multiple times until this value is reached (there
are also intermediary values).

At this step, the drive starts applying power to the motor. The time to reach Switched on state depends on the
motor initialization method and its parameters (the Start method as defined in the Drive Setup Dialogue in
ESM). Initialization times of up to 2s are not uncommon.

Warning: The master must always wait for the drive to reach the desired state programmed into Controlword by
checking the Statusword. No other command must be sent during this time. In this case, because the RPDOs are
synchronous, the RPDO1 must be sent continuously without changing the command in Controlword until the drive
reaches the desired state as reported into the Statusword.

After the drive reaches Switched On state, the master can continue to the next step.

21. Enable operation. Change the node state from Switched on to Operation enabled by sending the Enable
operation command via Controlword associated PDO.
Send the following message (SYNC)

COB-ID Data
80 null

This was the SYNC signal. It must be sent at precisely 10ms intervals.

Send the following message (RPDO1)

COB-ID Data
206 OF 00 00 00 00 00

The 000F is the command to enter Operation enable state in Controlword.

Send the following message (SYNC)

COB-ID Data
80 null

This was the SYNC signal. It must be sent at precisely 10ms intervals.

After each SYNC signal, the drive will send its TPDO1. Ensure that the drive reaches Operation enabled state
by waiting for the TPDO1 with the following content:

Wait for the following message (TPDO1)

© Technosoft 2019 140 iPOS CANopen Programming

COB-ID Data
186 37 96 00 00 00 00

The 9637 is the Statusword value. The value xx37x shows that the drive reached Operation enable state. The

master may have to wait a few SYNCs and read the TPDOs multiple times until this value is reached (there
are also intermediary values).

From this step forward, the motor will execute a motion within 10ms to the absolute position given into RPDO1
as the Target position.

Step 22 describes a CSP_ motion command:

22. Move to 100 IU. Set the position command to 100 IU.

Send the following message (SYNC)

COB-ID Data
80 null

This was the SYNC signal. It must be sent at precisely 10ms intervals. The drive will process the previously
received RPDO immediately after the reception of the SYNC.
Send the following message (RPDO1)

COB-ID Data
206 OF 00 64 00 00 00

The 000F is the command to enter or remain in Operation enabled state in Controlword.
The 00000064 is the position command (=100 in decimal).

Send the following message (SYNC)

COB-ID Data
80 null

After this SYNC, the motor will start to travel to the absolute position 100 over the following 10ms. The drive
also sends the TPDO1 reporting the position of the motor sampled at the SYNC reception.

The master then needs to cyclically send the SYNC and RPDO1 with updated position commands.

© Technosoft 2019 141 iPOS CANopen Programming

10.4 Configuring Technosoft CANopen Drives for NC-PTP (CSP) operation in TwinCAT 3

10.4.1 Create a new project and scan for the drives

Start the TwinCAT 3 XAE programming environment and create a new project.

Choose your target system where the CANopen interface is located.

In Solution Explorer, expand the 1/0 section, right-click on devices and choose Scan.

3 new /O devices found

g

[Device 1 [EtherCAT Automation Protocel] [Local Area Connection 2 [TwinCAT-Intel § QK

.......... w:al Area Connection [TwinCAT Antel PL)

Device 3 [FCH1xx) [Slot 54 (OxFDEFE00D)]

Depending on the available devices, select only the CAN interface and click OK.

A scan for boxes prompt will appear. Click Yes to find the available CAN drives.

© Technosoft 2019 142 iPOS CANopen Programming

Another prompt appears for baudrate selection. Select the used baudrate and click OK.
Remark: the default baudrate for all Technosoft drives is 500 kbps if not defined otherwise in Drive Setup.

A scan progress bar will show how many nodes are found. Wait for it to finish, or just click cancel if all the nodes are
detected.

Remark: on the example test system, the first scan does not find any drive. They are found on the second scan.

4 Fuvo
a ¥ Devices
4 €A Device 3 (FC51x)
«a Image
3 Inputs
- [Box1 (iPOS4808 MY/BX)
. [Box 2 (iPOS4808 MY/BX)

&7 Mappings

The new found nodes will be available in the Devices area. The Box number is actually the found CAN ID number.
Remark: The CANopen ID number is the same as the Technosoft AxisID number that can be defined in Drive Setup.

10.4.2 Setting the Sync-TxPDO Delay

T e

Solution Explorer

: - | General] FC5%oc JADS | Box States | DPRAM (Online) |
z Solution TwinCAT NC PTP Example’ (1 project)
4 [5] TwinCAT NC PTP Bample PCI Bus/Slot: 3/5 (xFDBFEO00)
» | SYSTEM ———
MOTION [Identrfy Device...] [Hardware Configuration...]
PLC Master-Node-1D: 127 = Upload Configuration
'é EAFEW Baudrate: 1M - Verify Configuration
.
P vo) Firmware:
4 % Devices Cycle Time (ps): 0 218
<in i
A Revice Fi(BGH o) SyncLCycle Muttiplier: 1 2

Image

Inputs Sync-Cycle-Time (in ps):

. B Box1 (iPOS4808 MY/BX)

> [Box 2 (iPOS4808 MY/BX)
&’ Mappings 0

Advanced Settings...

il
Sync-Tx-PDO Delay fin % Y =]

Disable Node-State Modffication

In the Solution Explorer, click on the device with the CAN interface. Select the CAN interface configuration tab and
select at Sync-Tx-PDO Delay a higher number than 30%. On some systems, if the time difference between the Sync
message (sent by the master) and the Synchronous TxPDO (sent by the drive) exceeds x% of the communication time,
TwinCAT considers it as an error, power off the drive and restarts it again. By increasing this time, such sudden power
offs will be avoided.

Remark: on the test system, the value of 80% eliminated all issues. On another system, the value of 80% cause the
remote device not to communicate anymore. Choose the highest value while being still able to communicate with the
CAN nodes.

© Technosoft 2019 143 iPOS CANopen Programming

10.4.3 Adding new Nc-PTP axes

Right Click MOTION and choose add new item... .

Insert Motion Configuration

==

Type:

Mame: NC-Task 1

Ok

A new prompt will come up. Choose the NC/PTP NCI Configuration and click OK.

Right Click Axes under the NC-Task and choose the Add New Item...

A new prompt will come up. Click OK to add the axis.

If more axis need to be defined, they can be copy-pasted later, after more setting are done.

10.4.4 NC-PTP Axis settings

TwinCAT NC PTP Example X

=
General| Settings | Paramet Online | Functi Coupling | C: i
3 Solution TwinCAT NC PTP Example’ (1 project] et D G| Fchos | Covpl ‘
4 [3] TwinCAT NC PTP Eample Link To 1/O.
vl SYSTEM
S MoTIoN ik To PLC..
4 [B] NC-Task1 saF
.IEI NEToch 158 #is Typs: [Standard (Mapping via Encoder and Diive) -
Ty ‘Standard (Mapping via Encoder and Drive)
= Imoae i SERCOS Drve (5. EtherCAT SoE Drive, AXBocc-B750)
Sbles RO oua e 2 2 B
4 e e JProfle MDP 742 (e g EinerCAT CoE Diive) I
o Dinve (LQNIDUS
‘AXDocx-BS00 Drive (Ethemet)
pLC KL5051 (BiSSHrterface)
KL2521 (Pulse Trai Irterface)
SAFETY Resul 1 2531/KL2541 (Stepper-nteriace)
Cow Postion: | KL2532/KL2542/KL2552/KL2535/KL2545 (Amplfer rterface)
= 10 Lenze Drve (CANopen)
« @ mm Soft Drive {Object)
4 %% Devices Stepper Diive (MDP 703)
4 GR Device 3 (FC51ag DC Drve (MOF 733)
B image s Cycle T Pulse Train Interface (MOP 252)
* 5 Puike Train Drve (MOP 253)
» 0 Inputs jvider e s e
» M Box1 (iPOSIS08 MY/EX) Modl
> Box2 (IPOSAB08 MY/BX)

© Technosoft 2019

144

iPOS CANopen Programming

Click the Axis 1, choose the settings tab and select under Axis Type, the CANopen DS402... type.

TwinCAT NC PTP Example 3
=
- Solution ‘TwinCAT NC PTP Exsmple’ (1 project)

Settings || Parameter | Dynamics | Onine | Functions | Couping | Compensation |

a4 [3 TwinCAT NC PTP Example
> (@l sYsTEM
a MOTION
4 8] NC-Task1 SAF
Axis Type: | CANopen DS402/Profile MDP 742 fe.g. EtherCAT CoE Diive) -

[21 NC-Task 1 5V8

%" Image

Unit:

] o] Diplay Onky

[Tables
4 P foce mm Position: ~ [[1m* [Z] Modulo
pLi saree
(@] saFeTY Resut <

Under the same settings, you can choose the motor units like mm or geometrical degrees.

Select the parameters tab and set the Position Lag Monitoring to FALSE. This is a TwinCAT protection that monitors
the difference between the motor actual position and commanded position. This protection is already present in the
Technosoft drive as the Control Error setting, which often is more precise and quicker to react, because the drive internal
clock (default 1ms) is usually faster than the CAN communication cycle times (min 2ms). When the drive detects a
control error, it will enter Fault state and TwinCAT will stop normal operation.

Solution Explorer MRl TwinCAT NC PTP Example X
=)

. " |Ger|em| | NC—EnuuderI Parameter ITirne Compensation | Onhne‘
'g Solution TwinCAT NC PTP Example' (1 project)

4[5 TwinCAT NC PTP Example | | |
> |l SvsTEM
4 MOTION
a [NC-Task1 SAF
[Z1 NC-Task1 SVB

Encoder Evaluation:
FALSE
360.0

Invert Encoder Counting Direction

Scaling Factor Numeratar

]
4% Image Scaling Factor Denominator (default: 1.0)
E La(bles Position Bias 0.0
4 i Axes
: b fxisl Medule Factor (e.g. 360.0%) 360.0
Tolerance Window for Modulo Start 0.0
) =§ Dnve OxFFFFFFFF

Encoder Mask (maximum encoder valug)

Under NC Task/ Axes / Axis 1/, click the Enc and then choose the Parameter tab on the right hand side.

Because the example uses a rotary motor, write 360 in the Scaling Factor Numerator field. 360 stands for mechanical
degrees. In the Scaling Factor Denominator, write 2000 or whatever value it takes in encoder increments for one full
motor rotation. In the example case, a 500 lines quadrature encoder was used, resulting in 2000 encoder increments
for one motor rotation.

If using a Stepper Open Loop without a feedback, set the denominator to the entire number of microsteps it takes to do
one full motor rotation. In addition, in case there is no feedback available, map object 6062+ instead of 6064 (see later
mapping explanations).

10.4.5 Setting the CAN communication cycle time

Solution Explorer > q1x

TwinCAT NC PTP Example > _

=

; Solution ‘TwinCAT MC PTP Example' (1 project)
4 [3l TwinCAT NC PTP Example
> [l SYSTEM

4[] MoTION
(4 [l NC-Task 1 SAF
[& NC-Task 1 SVE

* B Image

[Tables

4 I Axes

Task | Retain IOnIme

NC-Task 1 SAF

Name
Auto start
[] Auta Priority Management
Priarity: 4 =
4 = 4.000

Cycle ticks ms

Start tick (modulo): o =

=~

Click the NC-Task and select the CAN communication cycle time. In this example, a 4ms cycle time was chosen. It is
not recommended to use more than 4 drives at 1Mbit baud and 2ms cycle time. If more drives are present, more CAN
data will fill up the bandwidth and some messages might be lost. More performance tests should be done carefully if the
communication settings are tougher.

© Technosoft 2019 145 iPOS CANopen Programming

10.4.6 Configuring the TwinCAT PDO layout

a €if Device 3 (FC51md)

2B Image
Inputs
4 [Box1 (iPOS4808 MY/BX)
Inputs 4 iR Device 3 (FC5lx)
- |
B Outputs *H Image
BT TxPDO1 > Inputs
BT TxPDO 2 4 B Box1 (iPOS4808 MY/BX)
Bl RxPDO1 > Inputs
Bl RxPDO2 W Outputs
. Bl RxPDO3 . Bf TxPDO1
. | B] RxPDO 4 . Bl R«PDO1
Box 2 (IPO54808 MY/BX) and - [Box 2 (iPOS4808 MY/BX)

Expand Box 1 and click on RxPDO 4. Press the delete key or choose Edit/ Remove, to delete RxPDO4. Do the same
for RxPDO3, 2 and TxPDO2. Leave only TxPDO1 and RxPDO1 active. The less PDO data is active, the less data will
be transmitted on CAN and more drives can be added to the network while keeping a low communication cycle time.

Expand the Inputs under TxPDO1 and remove the Varln-0. Also, remove the VarOut-0 from the RxPDO1.

s BLIxPDO

a BLRxPDOL| 5 add NewItem.. Ctrl+Shift+A
W Outpt

B Box2 (POSH Recalc Addresses

Right Click Inputs and choose Add New ltem... .

Insert Variable

Mame: Statugwiord Multiple: 1 =
Start Address: | Bute: 1} L 0
[Show &l

Data Type >Size Mame Space B~
SINT 1 [
USINT 1
DPY2_TIMESTAMPSTATUS 2 o
INT 2

|

WORD

BOOL3Z
Ex_KBUS_STATE
DATE

o

H
4
4
4

Select UINT (2 byte size), name it Statusword and set the Start Address 0. Click OK.

© Technosoft 2019 146 iPOS CANopen Programming

Insert Variable

General

[Show &l

Marme: Postion Actual Yalue Multiple: 1

0

Start Address: Bute: 2

Mame Space

Data Type
RTIME_STATEFLAGS
UINT

WORD

BOOL32
B_KBUS_STATE
DATE

Add another item under Inputs. Select DINT (4 byte size), name it Position actual value and set the Start Address 2.
Click OK. This means that the 4 byte position actual value will be found starting with byte 2 of the TxPDO1 data.

Insert Variable

enerd
Mame: Digital Inputs Status 8bit | Multiple: 1

Start Address: Bute: B i}

[Show Al

Data Type »Size Name Space =
BT 01 [
BITS 1

BOOL 1

BYTE 1

INT
RTIME_STATEFLAGS
UINT

(This step is optional) Add another item under Inputs. Select USINT (1 byte size), name it Digital Inputs Status 8bit and
set the Start Address 6. Click OK. This means that the 1byte Digital inputs status object will be found starting with byte

6 of the TxPDO1 data.

Insert Variable
MName: Controlward Multiple: 1
Start Address: Buyte: o 0
[Show All
Data Type »Size Name Space e
DPY2_TIMESTAMPSTATUS 2 o [
INT 2
[UINT 2 |
BOOL32 4
B<_KBUS_STATE 4 o
DATE 4
DATE_AMD_TIME 4
DINT 4 7

Add an item in RxPDO1 under Outputs. Select UINT (2 byte size), name it Controlword and set the Start Address 0.
Click OK.

Insert Variable

General

Mame;

Target Position

Multiple:

2

Start Addiess:

Eute

[Show All

1
[t}

Data Type

Ex_KBUS_STATE
DATE

DWwWiORD
ENUM

»Gize

4
4

DINT 4

Name Space
o

ETcloEcFredictDataType
ETcloEcPredicttdethod

[n)
a

4
4
4
4
4

HRESULT

Add another item under Outputs. Select DINT (4 byte size), name it Target Position and set the Start Address 2. Click
OK. This means that the 4byte Target position will be found starting with byte 2 of the RxPDO1 data.

© Technosoft 2019 147 iPOS CANopen Programming

10.4.6.1 Setting the PDOs as synchronous

TwinCAT NC PTP Example X Solution Explorer Ml TwinCAT NC PTP Bxample

= =)
-Genm PDO General | FDO
) Solution TwinCAT NC PTP Example' (1 project) 4 Solution TwinCAT NC PTP Example’ (L project)
4[5 TwinCAT NC PTP Example T«PDO 1 4 [TwinCAT NC PTP Example AxPDO 1
> [l svsTEM b @l SYSTEM R
4 [MOTION COB ld: 385 0181 4 = MoTION COB id D201
4[] NC-Task1 SAF 4 8] NC-Task 1 5AF
B NC-Task1 SVB Trans. Type 285 (ssync) e [NC-Task1 5VB Trans. Type
8 [mage [o - 8 jmage Madulo: 0
[Tables e ame] I [Tables
4 e Axes 3 (ey, sync) 1 4 T Axes 2 =
b B Auis1 Inhibit Time: g%ixg L D Ea Avis1 Imhibit Time =
g rLc Length 6 {cyc, sync) PLC Length: 6
51 SAFETY 7 {eye. syne) (3] SaFETY ry
Event Time: 8 (cye, sync) Event Time: 0 2
[oo 9 (cye, sync) [c-+
“ ‘L%]D [C] Disable :he:km[-}? ﬂﬁ “ ‘I“/E':D Disable checking of PDO length
4 evices M2 P evices
4 €A Device3 (FC5Ln) PO Togdle/PD 5 00 o 4 cin Device3 (FC5Lo) PRO-Tosgle/POO-State
+B page PDOCortrol |14 {oye. sync) *8 Image PDO-Cortrol
- 15 . Sy"C) -
b Inputs 16 {eye, sync > Inputs
4 Box1 (iPOSAS08 MY/EX) 17 (eye. syme) 4 B Box1 (POS4308 MY/BX)
Input: 18 (ove.gme I
g puts 15 (ave. syne > nputs
Qutputs 20 sy W Outputs
e 1 B S L T
22 (cye. syme
] Inputs 23 oy, ayme a Inputs
StatusWord 24 ., syne) #1 StatusWord
Position Actual Value = o #1 Position Actual Value
4 BLRePDOL @ 0Erors | _Aﬂ\gg o - fages @ 0Emors | 1\ 0Warnings | (i) 0 Messages
4+ W Outputs . Epaaals a Cutputs
- ControlWord Description = ControlWord Description
- Target Position &+ Target Position
Click TxPDO1 and select the PDO tab on the right side. Click RxPDO1 and select the PDO tab on the right side.
Set the Trans. type to 1 (cyc, sync). This setting will Set the Trans. type to 1 (cyc, sync). This setting will
make TxPDO1 synchronous with every sync message. make RxPDO1 synchronous with every sync message.

10.4.7 Adding start-up SDO drive configuration messages

10.4.7.1 Mapping objects to RxPDO1

Solution Explorer R rincat e porpie < [

= —
| General | CAN Node| SDOs faDs | Diag | Oniine |
3 Solution TwinCAT NC PTP Example’ (L project)
. aE‘;&;TE;C PTP Example Obj.icx Sub. ide Length Value (dec) Value thex)
3
Qs 1 4 85 [E]
“ 8 MOTION @S> 2 1 1 el
4 B NCTask1saF @400 1 4 513 0201
[B) NC-Task1 SVB a2] ; ol
28 jmage
[Tables
4 e Aces
bk Avis1
@ ric
(3 saFETY
& c++
« = [Restatt Node when o TPDOs are received for 108 afer Start Node
4 L Devices
4 G Device3 (FC5La) max. 5D0sin Send Queve: |5 |5 max. Boot-Up Timeout fs): 0 [+
#% Image max, SDO Tmeout fms) 2000
;7 Inputs
S = (5] (&
ST Inputs -
. Outputs Edit SDO Entry ==
4 11 TPDO1
041500
L s Iruter e I oK
%) StatusWord Subindes (dec) | 0
51 Position Actual Value Lengtoer [0
%1 Digital Inputs Ststus 8bit
. L ﬁpgol © 0 Emar | i 0var] "2 1950 0 hes 040
4 Outputs :
B ControlWord Description
& Target Position
> B Box2 (POS4S08 MY/EX)
&%, Mappings

Select Box1; Select the SDOs tab and then click the Append... button to add configuration SDOs. This SDO list will be
sent every time the master starts, or it detects that the drive was reset.

First set index 1600n, sub-index 0x0, Length 1, Value 0. Sub-index 0 of object 1600n represents how many objects are
mapped in RxPDO1. To be able to define(map) any object, first, sub-index 0 must be set to 0.

Edit SDO Entry (3]

Indes [hex]: 0x1600
Subindex [dec):
Length [dec): 4

Yalue [dec) 1614807056 [hew): |DHBU4DDD1D |

Click the Append.. button to add another SDO.

Set index 1600n, sub-index 0x1, Length 4, Hex Value 0x60400010; This command will map object 6040 (Controlword)
to sub-index 1 of object 1600n (RxPDO1) and will represent the first 2 bytes of RxPDO1 data. The length is 4 bytes,

© Technosoft 2019 148 iPOS CANopen Programming

because sub-index 1..to 8 of object 1600 is 4 bytes long. The data 0x60400010 represents the following: 6040 is the
mapped object; 00 is the sub-index of the mapped object; 10 is the hex value (16 decimal) of the length in bits of the
mapped object sub-index. If it was a 32bit sub-index, it would have been 20. If it was an 8bit sub-index, it would have
been 08.

In any Tx or RxPDO, up to 64bit of data can be mapped. This means that all the objects lengths mapped into one PDO
must not exceed 64bits (8bytes) of data.

For example, one PDO can support: 1x16 bit object + 1x32bit object + 1x8 bit object + 1x8 bit object.

Edit SDO Entry (3]
Indes [hex]: 0x1600
Subindex [dec): | 2 Cancel
Length [dec): 4

Yalue [dec) 1618608160 [hew): |DxBD?ADD2E| |

Click the Append.. button to add another SDO.

Set index 1600n, sub-index 0x2, Length 4, Hex Value 0x607A0020; This command will map object 607An (Target
Position) to sub-index 2 of object 1600n (RxPDO1) and will represent the next 4 bytes of RxPDO1 data after the ones
occupied by sub-index 1. The data 0x607A0020 represents the following: 607A is the mapped object; 00 is the sub-
index of the mapped object; 20 is the hex value (32 decimal) of the length in bits of the mapped object sub-index.

Edit SDO Entry (3]
Index [hex]: Ox1600 oK,
Subindex [dec): | O Cancel
Length [dec]: 1
Walue [dec] K| hew): Ox2

Click the Append.. button to add another SDO.

Set index 1600n, sub-index 0x0, Length 1, Value 2. This command will enable the RxPDO1 mapping. Value is set to 2
because two sub-indexes were defined in object 1600n.

10.4.7.2 Mapping objects to TxPDO1

Edit SDO Entry (3]
Indes: [hex): 01400
Subindex [dec) | O Caniel
Length [dec]: 1
Walue [dec) 1] hew): 0x0

Click the Append.. button to add another SDO.

Set index 1A00n, sub-index 0x0, Length 1, Value 0. Sub-index O of object 1A00n represents how many objects are
mapped in TXPDO1. To be able to define(map) any object, first, sub-index 0 must be set to 0.

Edit SDO Entry (3]
Indes [hex): 0x1400 0K
Subindex [dec): 1 Cancel
Length [dec): 4

Yalue [dec) 1614872532 [hex]:l 0x60410010 I

Click the Append.. button to add another SDO.

Set index 1A00n, sub-index Ox1, Length 4, Hex Value 0x60410010; This command will map object 604 11 (Statusword)
to sub-index 1 of object 1A00n (TxPDO1) and will represent the first 2 bytes of TxPDO1 data. The data 0x60410010
represents the following: 6041 is the mapped object; 00 is the sub-index of the mapped object; 10 is the hex value (16
decimal) of the length in bits of the mapped object sub-index.

© Technosoft 2019 149 iPOS CANopen Programming

Edit 50O Entry

Indes [hex): 0x1400 0K
Subindex [dec): 2

Length [dec]: 4

Yalue [dec) 1617166368 [hew): IDKBDB4DD2E‘ I

Click the Append.. button to add another SDO.

Set index 1A00n, sub-index 0x2, Length 4, Hex Value 0x60640020; This command will map object 6064 (Position
Actual Value) to sub-index 2 of object 1A00n (TxPDO1) and will represent the next 4 bytes of TxPDO1 data after the
ones occupied by sub-index 1. The data 0x60640020 represents the following: 6064 is the mapped object; 00 is the
sub-index of the mapped object; 20 is the hex value (32 decimal) of the length in bits of the mapped object sub-index.

Edit SDO Entry (3]

Indes [hex]: 0x1400
Subindex [dec): 3
Length [dec): 4

Yalue [dec) 546242824 [hex]:l Ow208F0104 |

(This step is optional) Click the Append.. button to add another SDO.

Set index 1A00n, sub-index 0x3, Length 4, Hex Value 0x208F0108; This command will map object 208Fn (Digital inputs
status 8bit) to sub-index 3 of object 1A00n (TXPDO1) and will represent the next 1x byte of TxPDO1 data after the ones
occupied by sub-index 2. The data 0x208F0108 represents the following: 208F is the mapped object; 01 is the sub-
index of the mapped object; 08 is the hex value (8 decimal) of the length in bits of the mapped object sub-index.

This object is a shorter version of the standard object 60F Dn Digital Inputs Status. Sub-index 1 of 208Fh represents the
first 8 bits of 60FDn. The role of using 208Fnh instead of 60FDn is to reduce the number of bits that will be sent over CAN.
The drive digital inputs can be later used for the homing procedure.

Edit SDO Entry (3]
Indes (hex): 0x1400 oK.
Subindex [dec): | O
Length [dec]: 1
Walue [dec) 3 [hew): 03

Click the Append.. button to add another SDO.

Set index 1A00n, sub-index 0x0, Length 1, Value 3. This command will enable the TxPDO1 mapping. Value is set to 3
because three sub-indexes were defined in object 1A00k. If the third sub-index in 1A00n is not needed, then sub-index
0 should be set with the value 2.

10.4.7.3 Setting Modes of Operation to CSP mode

Edit SDO Entry (3]
Index [hex]: 06080 oK,
Subindex [dec): 0
Length [dec]: 1
Walue [dec)] [hew): 08

Click the Append.. button to add another SDO.

Set index 6060n, sub-index 0x0, Length 1, Value 8. This command will set object 6060n (Modes of Operation) with the
value 8 which is Cyclic Synchronous Position mode.

10.4.7.4 Setting the interpolation object

Edit SDO Entry @
Indes: [hex): 0:60C2
Subindes [dec) | 2
Length [dec]: 1

Walue [dec) 263 [hes): | 0=FD| |

Click the Append.. button to add another SDO.

© Technosoft 2019 150 iPOS CANopen Programming

Set index 60C2n, sub-index 0x2, Length 1, Hex Value OxFD. This command will set object 60C2n, sub-index 2
(Interpolation time Period index) with the value OxFD or decimal -3 because it is a short integer type. A -3 value means
milliseconds.

Edit SDO Entry (3]
Indes: [hex): 0:60C2
Subindex [dec) | 1

Length [dec]: 1
Walue [dec] 4 hew): Oxd

Click the Append.. button to add another SDO.

Set index 60C2n, sub-index 0x1, Length 1, Value 4. This command will set object 60C2h, sub-index 1 (Interpolation time
Period value) with the value 4 which will mean 4ms. Because the example is set at 4ms, sub-index 1 is set at 4. If the
CAN communication cycle has another value, then sub-index 1 must be set with that value.

The interpolation time must always represent 1x or multiples of the drive slow loop time which is set by default to 1ms.

10.4.7.5 Setting object 1006k to 0; Synchronization issue workaround

Edit SDO Entry (3]
Index [hex]:
Subindex [dec): 0

Length [dec]: 4
Walue [dec) 1] hew): 0x0

(This step is optional) On F508J/F509J and F514D firmware, if object 1006n receives a non-zero value, the drive will
not synchronize when receiving sync messages. TwinCAT automatically sets this object to a non-zero value without
being able to stop this behavior. A workaround is to set an SDO to write 0 again in 1006n. If the firmware on the
Technosoft drive is newer than the ones mentioned, this step is no longer necessary.

Click the Append.. button to add another SDO.

Set index 1006h, sub-index 0x0, Length 4, Value 0.

10.4.8 Linking drive PDO data variables to internal NC-PTP variables

10.4.8.1 Linking standard NC-PTP variables

In Box1/ TxPDO1/ Inputs/, double click the Statusword variable, or right click and select change link. A new window
called “Attach Variable Statusword” will appear. On the right hand side, select All types. Under NC-Task, Axis 1, Drive,
select the nState1 variable and click OK.

© Technosoft 2019 151 iPOS CANopen Programming

Varizble Size Mismatch @

Linked ariahle: nState]

Size Offget
Linked Variable: 8 [0] :
Owun Variable: 16 o =

-

Ovwerlapped: g =

[Size and Offset in bits) Cancel

A new window will appear, because a 16 bit variable will be linked over an 8 bit variable. Leave the settings as they are
and click OK.

a |AT TxPDO1
a Inputs
%! Hosition Actual Value
#1 Digital Inputs Status 8bit

Once a variable is linked, it will have a small arrow icon in front of it. The link can be changed, deleted or view the other
linked variable by using the right click mouse menu.

In Box1/ TxPDO1/ Inputs/, double click the Position Actual Value variable. Under NC-Task, Axis 1, Enc, select the
nDataln1 variable and click OK. Because both variables are 32bit, they will link directly.

Variable Size Mismatch @

Linked Variable: nCril

Size: Offset
Linked Variable: a m :
Qwin Variable: 16 a =

:

Overlapped: 8 =

[Size and Offset in bits | Cancel

In Box1/ RxPDO1/ Outputs/, double click the Controlword variable. Under NC-Task, Axis 1, Drive, select the nCtrl1
variable and click OK. The Show Variables/ All Types should be checked.

In the new menu that appears, just click OK.

© Technosoft 2019 152 iPOS CANopen Programming

In Box1/ RxPDO1/ Outputs/, double click the Target Position variable. Under NC-Task, Axis 1, Drive, select the
nDataOut1 variable and click OK.

10.4.8.2 Linking the home input INO to the HomingSensor of the NC-PTP interface

Under NC-Task/ Axis 1/ Inputs/ FromPIc/ ControlIDWord/, double click the HomingSensor variable to link it. In the menu
that appears, select All types on the right hand side. Link it to Digital Inputs Status 8bit variable.

Variable Size Mismatch @

Linked ¥ ariable: Digital Inputs Status Shit

Size Offset
Linked ¥ ariable: 8 7 [

[]

=)

Ovan Variable 1

Overlapped: 1 .
{ Size and Offset in bits)

A new menu will appear. The bool (1bit) variable HomingSensor should be linked only with 1 bit from the Digital Inputs
Status 8bit. Select Offset=2. Bit 2 is the Home Switch (or INO) in object 60FDn or 208Fh sub-index 1. Click OK.

10.4.9 Enabling and testing the NC-PTP interface in TwinCAT

To test the NC-PTP interface, click the Activate configuration button, and then click OK twice to the new questions that
appear.

© Technosoft 2019 153 iPOS CANopen Programming

Solution Explorer Mkl TwinCAT NC PTP Example X

% Solution TwinCAT NC PTP Exemple’ (1 praject General | Settings | Parameter | Dynamics| Online | Functions | Coupling | Compensation |
a TwinCAT NC PTP Example Setpaint Position r
jﬂgﬂ SYSTEM ? \ 845.3600 945 3600
. MOTION Lag Distance fmin/max): [] Actual Velocity: [*/&] Setpoint Velocity: [/e]
4 [B] NC-Task1 SAF 0.0000 (0.000, D.D0D) 0.0000 0.0000
[E1 NC-Task1 SVB Ovemide: [%] Total / Control Output: [%] Emor:
8 [nage 0.0000 % 0.00/ 0.00% 0 (0x0)
[77] Tables Status flog.) Status (phys.) Enabiing Set Enabling ==
4 T Axes [*] Ready NOT Moving [Coupled Mode [7] Controller
[Calbrated 7] Moving Fw [In Target Pos [Feed Fu [Controller
T, Enc [7] Has Job [T Moving Bw [T]In Pos. Range [7] Feed Bw [CIFeedFw
Ia, Ctrl Cfﬂlru”er Ky-Factor: [/sﬁ F;ezf;[r}ence Velocity: [/i] Dveride [
Inputs 0 Al
. [Outputs Target Position: yl Target Velocty: I/
PLC 0 Y 0
| SAFETY
[fed c++ _— - + ++ ® —
a vo F1 F2 F3 F4 F8 Fa
4 L Devices

To enable PWM power to the motor, click Axis 1 under the NC Task, select the Online tab and click on the Set button.
Click on the All button in the Set Enabling menu.

If everything is OK, the motor should apply torque and hold its position.

Press F4++ or F1- - to jog the motor back and forth. Press the F9 -->. button to start a homing procedure. Trigger the
digital input on the drive INO to finish the homing.

Remark: the homing procedure done with TwinCAT is more imprecise than executing a homing function in the drive.
The higher the communication time, the higher the lag between the decisions that the home switch has been reached.

10.4.10 Setting Controlword bit 14 to 1 (Optional)

In some cases, in the NC-PTP interface, the motor control is stopped and the motor is moved by external forces. At
motor control re-enable, the motor jumps towards the old position. This is because the new motion trajectory starts from
the actual position reference (the theoretical position where the motor should be). The position reference is also the old
position, when the motor was stopped, before it was moved by external forces.

If Controlword bit 14 is set to 1, then, when re-enabling motor control, the motion trajectory starts from the actual encoder
value. The motor will not jump if re-enabled after it was moved by external forces.

Set TwinCAT in Config Mode.

In the Solution Explorer, right click the PLC and choose Add New Item...

© Technosoft 2019 154 iPOS CANopen Programming

Name your new PLC project file and click the Add button.

In the Solution Explorer, double click the MAIN(PRG) under the PLC project file. In the newly
opened file, under the VAR section, write Var8bit AT%Q* :BYTE:=16#40; .

In the toolbar click Build/ Rebuild solution, for the Var8bit to be available for linking.

m

2 [Box1 (iPOS4808 MY/BX)
Inputs
W Outputs
a [f TxPDO1

a Inputs
' StatusWord
& Position Actual Value
%' Digital Inputs Status 8bit

a Bl RxPDO1
4 OQutputs Show output frem: | Build
=——
- Target Posit 7 Change Link...
4 §% Mappings K Clear Link(s)

g’ NC-Task1 SAF - Device 3
#4% Untitledl Instance - Device)
e] Take Name Over from linked Variable

Right click the Controlword variable and choose change link.

Gote Link Variable

© Technosoft 2019 155 iPOS CANopen Programming

Attach Variable ControlWord (Output)

B nCuls > 0B 284.0, USINT [1.0]

e g Drive L
-+ Out > OF 296.0, MCNCDRIVESTRUCT_OUTZ [40.00 |~

L E- nDataOutg[1] » QB 282.0,UINT [2.0] -
- nCule > 0B 2850, USINT [1.0]
- nChl7 > 0B 2860, USINT [1.0]
- nCuld > QB 287.0, USINT [1.0]

- rDatalutl > OB 296.0, UINTARR2 [4.0]

B nDataOut1[0] > 0GB 236.0, LINT [2.0]
- W nDataOut1[1] > 0F 2598.0, UINT [2.0]
- rData0ut2 > OB 300.0, UINTARR2[4.0]

Attach Variable ContrelWord (Output)

Show Variables

@ Unused

1 Used and unused
[Exclude disabled
Exclude other Devices
Exclude same Image
Show Tooltips:
[Sort by Address

Show Variable Types

B CamCouplngState[2] »
B¢ CamCoupingState(3]
B CamCoupingStatel4] >
B CamCoupingStatel5]
B CamCoupingStatels] >

P

0

B CamCouplingStatel7]
£ M CamCouplingTablelD >
& CamCouplingT ablelD[0]
¢ CamCouplingT ablelD[1]
B+ CamCouplingT ablelD[2]
B¢ CamCouplingT sblslD[3]

E

QB 170.0, USINT [1.0] B
0B 171.0, USINT [1.0]
0B 1720, USINT [1.0]
0B 173.0, USINT [1.0]
OB 174.0, USINT [1.0]
0B 175.0, USINT [1.0]
176.0. USINTARRE [B.0]
0B 176.0, USINT [1.0]
QB 177.0, USINT [1.0]
0B 178.0, USINT [1.0]
0B 179.0, USINT [1.0]

Show Variables

@ Unused

1 Uzed and unuzed
[Exclude disabled

Exclude other Devices

Exclude same Image
Show Toaltips
[Sort by Address

Show Variable Types

, nDatadut2l0] > OB 300.0 UINT [20] matc:f"g ;ip: - CamCouglingTabielD[4] > 0B 1800, USINT [1.0] m::z:::s ;i'f
aiall 0 INT[zO] | peemlbes B+ CamCouplngTablelD[s] > ©B 157.0. USINT [1.0] o
: 0 5 B CamCouplingTablelD[s] > OB 182.0USINT [1.0] a1 Types
T W nCul2 > 08 3050, USINT [1.0] Aray Mads - CamCouplingTablelD[7] > QB 183.0, USINT [1.0] Aay Mode
EnCul3 > 08 3080, USINT[1.0] r— B DcTimeStamp > 8 1840, LDINT [40] —
WOl > 08 307.0,USINT [1.0] K¢ ActTomueDerivative > G 1920, LREAL [30]
M nDate0u3 > OB 306.0, UINTARRZ [4.0] Clfontinuous]| B SelToqueDeivalive > QB 2000, LREAL [80] [Continueus
- Data0ut3[0] > OB 308.0, UINT [2.0] [7] Show Dislog v ActPoswithoutPosCanection > 0B 224.0, LREAL [7.0] [5how Dialag
e rDataludl] > 8 0.0, UINT [210] T | B Acthcc > OB 2320 LREAL[30] atabie Name
B rData0ud > B A120 LINTARRZ [40]
- rDataOutd[0] > 0GB 312.0, LINT [2.0] Hand awver Hand aver
B rDataOud[1] > G 314.0,UINT [20] [7] Take over [7] Take over
o e nDataluts > GB 316.0, UINTARR2 [4.0] -
‘ i v | [Cancel | K v | [ganeel | [k

)

While having the All types (for Show variables) checked and nCtrl1 variable selected, hold Ctrl key and select from the
end of the list MAIN.Var8bit and click OK. Both nCtrl1 and Var8bit should be selected before clicking OK.

Variable Size Mismatch

==

Variable Size Mismatch

o]
Cancel

[Size and Offset in bits |

and

[Size and Offset in bits |

Linked ariable: nCkll Linked ¥ ariable: MAIN W arBhit
Size Offgat Size Offset
Linked ¥ ariable: & Linked ¥ ariable: &
Owin Variable 16 Ovan Variable 16
Overlapped: 8 2 L Overlapped: 8 %

Cancel

For the next two dialogues that come up next, do the following:
For the nCitrl1, just click OK. The Own Variable offset should be 0.
For the Var8bit, select the Own Variable offset = 8 and click OK.

Click the Activate configuration button, and then click OK twice to the new questions that appear.

Click PLC/ Login and click yes to the question that follows.

Click PLC/ Start, to initialize the Var8bit value.

Follow chapter 10.4.9 Enabling and testing the NC-PTP interface in TwinCAT again to test the interface.

© Technosoft 2019

156

iPOS CANopen Programming

11 Velocity Profile Mode

11.1 Overview

In the Velocity Profile Mode the drive performs speed control. The built-in reference generator computes a speed profile
with a trapezoidal shape, due to a limited acceleration. The Target Velocity object (index 60FFn) specifies the jog speed
(speed sign specifies the direction) and the Profile Acceleration object (index 6083n) the acceleration/deceleration
rate. While the mode is active, any change of the Target Velocity object by the CANopen master will update the drive’s
demand velocity enabling you to change on the fly the slew speed and/or the acceleration/deceleration rate. The motion
will continue until the Halt bit from the Controlword is set. An alternate way to stop the motion is to set the jog speed to
zero.

While the mode is active (profile velocity mode is selected in modes of operation), every time a write access is performed
inside the object farget velocity, the demand velocity of the drive is updated.

11.1.1 Controlword in Profile Velocity mode

MSB LSB
See 6040n Halt See 6040n reserved See 6040n
15 9 8 7 6 4 3 0

Table 11.1.1 — Controlword bits for Profile Velocity mode

Name Value Description
Halt 0 Execute the motion
1 Stop drive with profile acceleration

11.1.2 Statusword in Profile Velocity mode

MSB LSB
See 6041, ~ Max slippage oo See 6041, |arget See 6041
error reached
15 14 13 12 11 10 9 0

Table 11.1.2 — Statusword bits for Profile Velocity mode

Name Value Description
0 Halt = 0: Target velocity not (yet) reached
Halt = 1: Drive decelerates
Halt = 0: Target velocity reached
Halt = 1: Velocity of drive is 0
Speed is not equal to 0
Speed is equal to 0
Maximum slippage not reached
Maximum slippage reached

Target reached

Speed

Max slippage
error

Ao -

Remark: In order to set / reset bit 12 (speed), the object 606Fn, velocity threshold is used. If the actual velocity of the
drive / motor is below the velocity threshold, then bit 12 will be set, else it will be reset.

11.2 Velocity Mode Objects

11.2.1 Object 6069n: Velocity sensor actual value

This object describes the value read from the velocity encoder in increments.
The velocity units are user defined speed units. The value can be converted into internal units using the velocity factor
If no factor is applied 65536 IU = 1 encoder increment / sample.

Object description:
Index 6069n
Name Velocity sensor actual value
Object code VAR
Data type INTEGER32

© Technosoft 2019 157 iPOS CANopen Programming

Entry description:

Access RO

PDO mapping Possible
Value range INTEGER32
Default value -

11.2.2 Object 606Bh: Velocity demand value

This object provides the output of the trajectory generator and is provided as an input for the velocity controller. It is
given in user-defined velocity units.

Object description:
Index 606Bh
Name Velocity demand value
Object code VAR
Data type INTEGER32
Entry description:
Access RO
PDO mapping Possible
Value range INTEGER32
Default value -

11.2.3 Object 606Cnh: Velocity actual value

The velocity actual value is given in user-defined velocity units and is read from the velocity sensor.
Object description:

Index 606Ch
Name Velocity actual value
Object code VAR
Data type INTEGER32
Entry description:
Access RO
PDO mapping Yes
Value range INTEGER32
Default value -

11.2.4 Object 606Fn: Velocity threshold

The velocity threshold is given in user-defined velocity units and it represents the threshold for velocity at which it is
regarded as zero velocity. Based on its value, bit 12 of Statusword (speed) will be set or reset.

Object description:

Index 606Fh

Name Velocity threshold

Object code VAR

Data type UNSIGNED16
Entry description:

Access RW

PDO mapping Possible

Value range UNSIGNED16

Default value -

11.2.5 Object 60FFn: Target velocity

The target velocity is the input for the trajectory generator and the value is given in user-defined velocity units. By default,
the value is given in IU and it is of a 16.16 bit structure. The integer part is in the MSB and the fractional part is in the
LSB. To elaborate, see Paragraph 8.2.2 example.

This object is used for the velocity command only when 6060 Modes of Operation is 3 (Speed Mode).
Object description:

Index 60FFh

Name Target velocity
Object code VAR

Data type INTEGER32

© Technosoft 2019 158 iPOS CANopen Programming

Entry description:

Access RW

PDO mapping possible
Value range INTEGER32
Default value -

11.2.6 Object 60F8h: Max slippage

The max slippage monitors whether the maximum speed error. The value is given in user-defined velocity units. When
the max slippage has been reached, the corresponding bit 13 max slippage error in the Statusword is set and the drive
will fault by signalizing a control error (MER register/object 2000n bit3=1).

The Speed control error is active only if the speed loop is active in setup. By default it is disabled. The speed control
error is set when the actual speed error is greater than what is defined in object 60F 8 for a time defined in object 2005¢.

Object description:

Index 60F8n

Name Max slippage

Object code VAR

Data type INTEGER32
Entry description:

Access RW

PDO mapping possible

Value range INTEGER32

Default value -

This object is automatically set in Drive Setup by modifying the Speed control error. To modify the speed control error
in setup, check the Speed radio button under control in Drive Setup and re-check the position button when done. Even
if the GUI does not allow modification, if checked, the protection will still be active.

The value for this object can be changed by editing the parameter “SERRMAX” found in parameters.cfg of the project
file.

By default, the value is given in IU and it is of a 16.16 bit structure. The integer part is in the MSB and the fractional part
is in the LSB. To elaborate, see Paragraph 8.2.2 example.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

11.2.7 Object 20051: Max slippage time out

Time interval for max slippage. The value is given in slow loop (control loop) time which is by default set to 1ms for
brushless and brushed motors and 0.8ms for stepper motors. This object is coupled with Object 60F8h: Max slippage.

Object description:

Index 2005n
Name Max slippage time out
Object code VAR
Data type UNSIGNED16
Entry description:
Access RW
PDO mapping No
Value range UNSIGNED16
Default value -

The value for this object can be changed by editing the parameter “TSERRMAX” found in parameters.cfg of the project
file.

Activating Object 2076h: Save current configuration, will set its current values as the a new default.

© Technosoft 2019 159 iPOS CANopen Programming

11.2.8 Object 2087h"': Actual internal velocity from sensor on motor

This object describes the velocity value read from the encoder on the motor in increments, in case a dual loop control
method is used. The value is given in increments per sampling loop. The default sampling loop is 1ms.

The read value is of a 16.16 bit structure.

Object description:
Index 2087h
Actual internal velocity sensor on
Name
motor
Object code VAR
Data type INTEGER32
Entry description:
Access RO
PDO mapping Possible
Value range INTEGER32
Default value -

11.3 Speed profile example

Remark: any speed profile mode can be run only if the speed loop is active in setup (by default it is disabled).

To enable the Current + Speed loop, in Drive setup, select under Control mode the speed radio button:

Contral mode
" Position

" Torque

Advanced

To enable the Current + Speed + Position loop, in Drive setup, select under Control mode the Position radio button and
then click the Advanced button. Under control scheme, select the “Close position, speed and current loop” radio button.

After the speed is selected, the tuning for the speed loop must be done.

" Cloge only pozition and curent loop

(;_ : o H . HYH
lose pesiton, speed and swtent oo Agter a1l three loops are selected, the tuning for the speed and position must be done
again.

Execute a speed control with 600 rpm target speed.
1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data
0 01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.
Send the following message:

COB-ID Data
206 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.
Send the following message:

COB-ID Data
206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.
Send the following message:

COB-ID Data
206 OF 00

5. Mode of operation. Select speed mode.

" Object 20871 applies only to drives which have a secondary feedback

© Technosoft 2019 160 iPOS CANopen Programming

Send the following message (SDO access to object 6060n, 8-bit value 3h):

COB-ID Data
606 2F 60 60 00 03 00 00 00

6. Target velocity. Set the target velocity to 600 rpm. By using a 500 lines incremental encoder and 1ms sample
rate for position/speed control the corresponding value of object 60FFn expressed in encoder counts per
sample is 140000n.

Send the following message (SDO access to object 60FF 32-bit value 00140000n):

COB-ID Data
606 23 FF 60 00 00 00 14 00

7. Check the motor actual speed. It should rotate with 600 rpm.

Send the following message (SDO access to read object 606Ch Velocity actual value):

COB-ID Data
606 40 6C 60 00 00 00 00 00

© Technosoft 2019 161 iPOS CANopen Programming

12 Electronic Gearing Position (EGEAR) Mode

12.1 Overview

In Electronic Gearing Position Mode the drive follows the position of an electronic gearing master with a programmable
gear ratio.

The electronic gearing slave can get the position information from the electronic camming master via CANbus
communication channel, from another Technosoft CANopen drive set as electronic gearing master with object Master
Settings (index 2010n). The position is sent using TechnoCAN, an extension of the CANopen protocol, developed by
Technosoft.

The online reference received via communication channel is set with Object 201Dh: External Reference Type.

The drive set as slave in electronic gearing mode performs a position control. At each slow loop sampling period, the
slave computes the master position increment and multiplies it with its programmed gear ratio. The result is the slave
position reference increment, which added to the previous slave position reference gives the new slave position
reference.

Remark: The slave executes a relative move, which starts from its actual position

The gear ratio is specified via EGEAR multiplication factor object (index 2013r). EGEAR ratio numerator (sub-index
1) is a signed integer, while EGEAR ratio denominator (sub-index 2) is an unsigned integer. The EGEAR ratio numerator
sign indicates the direction of movement: positive — same as the master, negative — reversed to the master. The result
of the division between EGEAR ratio numerator and EGEAR ratio denominator is used to compute the slave reference
increment.

The Master Resolution object (index 2012n) provides the master resolution, which is needed to compute correctly the
master position and speed (i.e. the position increment). If master position is not cyclic (i.e. the resolution is equal with
the whole 32-bit range of position), set master resolution to 0x80000001.

You can smooth the slave coupling with the master, by limiting the maximum acceleration of the slave drive. This is
particularly useful when the slave has to couple with a master running at high speed, in order to minimize the shocks in
the slave. The feature is activated by setting Controlword.5=1 and the maximum acceleration value in Object 6083h:
Profile acceleration.

12.1.1 Controlword in electronic gearing position mode (slave axis)

MSB LSB
See Halt See Reserved ﬁgg\élaet?ation Enable Electronic See
6040n 6040n s Gearing Mode 6040n

Limitation
15 9 8 7 6 5 4 3 0
Table 12.1.1 — Controlword bits for Electronic Gearing Position Mode
Name Value Description
Enable 0 Do not start operation
Electronic 0->1 Start electronic gearing procedure

Gearing Mode 1->0 Does nothing (does not stop current procedure)

Activate 0 Do not limit acceleration when entering electronic gear mode
Acceleration 1 Limit acceleration when entering electronic gear mode to the value set in
Limitation profile acceleration (object 6083n)
Halt 0 Executg the .instruct'ion of bit 4 '

1 Stop drive with profile acceleration

12.1.2 Statusword in electronic gearing position mode

MSB LSB

See 6041n Following poserved See 6041, 1ar9et See 6041n

error reached

15 14 13 12 11 10 9 0
Table 12.1.2 — Statusword bits for Electronic Gearing Position Mode

Name Value Description

0 Halt = 0: Always 0
Target Halt = 1: Drive decelerates
reached 1 Halt = 0: Always 0
Halt = 1: Velocity of drive is 0
Following 0 No following error
error 1 Following error occurred

© Technosoft 2019 162 iPOS CANopen Programming

12.2 Gearing Position Mode Objects

12.2.1 Object 2010n: Master settings

This object contains key settings for the master of EGEAR / ECAM mode. A master in EGEAR / ECAM mode is a drive
that controls a motor (irrespective of the control mode) and that will be designated to send the information about its
position (demanded position or actual position) via communication to one or more slaves (programmed accordingly).

This object also allows setting the address of the slave to which the master will send its position, or, if there are more
slaves to receive simultaneously the position from the master, the Group ID of these slaves.

Object description:

Index 2010n

Name Master settings

Object code VAR

Data type UNSIGNED16
Entry description:

Access RW

PDO mapping Possible

Units -

Value range 0 ... 65535

Default value 0

Table 12.2.1 — Master Settings bits description

Bit Value Description
15 0 Master is not active — the master drive does not send any position values
1 Master is active — the master drive starts sending its position to the slave axis
14 10 0 Reserved
9 0 The master sends its feedback (the position actual value)
1 The master sends the demand position
8 0 Address is an axis ID
1 Address is a group ID
7..0 X Address of the slave drive(s)

12.2.2 Object 2012n: Master resolution

This object is used in order to set the master resolution in increments per revolution. This object is valid for the slave
axis.

Object description:

Index 2012n
Name Master resolution
Object code VAR
Data type UNSIGNED32
Entry description:
Access RW
PDO mapping Possible
Units Increments
Value range 0...2%-1
Default value 80000001+ (full range)

12.2.3 Object 2013n: EGEAR multiplication factor

In digital external mode, this object sets the gear ratio, or gear multiplication factor for the slaves. The sign indicates the
direction of movement: positive — same as the master, negative — reversed to the master. The slave demand position is
computed as the master position increment multiplied by the gear multiplication factor.

Example: if the gear ratio is Slave/Master = 1/3, the following values must be set: 1 in EGEAR ratio numerator (sub-
index 1) and 3 in EGEAR ratio denominator (sub-index 2) .

Remark: the gear ratio is computed after sub-index 2 is written. So sub-index1 must be written first and then sub-index
2. Even if sub-index 2 has the same value as before, it must be written again for the gear ratio to be computed correctly.

Object description:

© Technosoft 2019 163 iPOS CANopen Programming

Entry description:

Index 2013n

Name EGEAR multiplication factor
Object code RECORD

Number of elements 2

Sub-index 1

Description EGEAR ratio numerator (slave)
Object code VAR

Data type INTEGER16

Access RW

PDO mapping Possible

Value range -32768 ... 32767

Default value

1

Sub-index 2

Description EGEAR ratio denominator (master)
Object code VAR

Data type UNSIGNED16

Access RW

PDO mapping Possible

Value range 0 ... 65535

Default value

1

12.2.4 Object 2017n: Master actual position

The actual position of the master can be monitored through this object, regardless of the way the master actual position
is delivered to the drive (on-line through a communication channel or from the digital inputs of the drive). The units are
increments.

Object description:
Index 2017n
Name Master actual position
Object code VAR
Data type INTEGER32
Entry description:
Access RO
PDO mapping Possible
Value range =281 .. 2811
Default value 0

12.2.5 Object 2018n: Master actual speed

This object is used to inform the user of the actual value of the speed of the master, regardless of the way the master
actual position is delivered to the drive (on-line through a communication channel or from the digital inputs of the drive).
The units are increments / sampling. 1 IU = 1 encoder increment / sample.

Object description:

Index 2018hn
Name Master actual speed
Object code VAR
Data type INTEGER16
Entry description:
Access RO
PDO mapping Possible
Value range -32768 ... 32767
Default value 0

12.2.6 Object 201Dn: External Reference Type

This object is used to set the type of external reference for use with electronic gearing position, electronic camming
position, position external, speed external and torque external modes.

Object description:

Index 201Dn
Name External Reference Type

© Technosoft 2019 164 iPOS CANopen Programming

Object code VAR
Data type UNSIGNED16
Entry description:
Access RW
PDO mapping No
Value range UNSIGNED16
Default value -
Table 12.2.2 — External Reference Type bit description
Value Description
0 Reserved
On-line.
In case of External Reference Position / Speed / Torque Modes, select this option in
1 order to read the reference from the object 201C, External Online Reference
In case of Electronic Gearing and Camming Position Modes, select this option in
order to read the master position received from a master drive via communication
Analogue.
2 In case of External Reference Position / Speed / Torque Modes, select this option in
order to read the reference from the dedicated analogue input.
4 ... 65535 Reserved

12.3 Electronic gearing through CAN example

This example is split in two parts:
Part1: Start an electronic gearing master profile on CAN.
1. Start remote node. Send a NMT message to start the node id 7.

Send the following message:

COB-ID

Data

0

0107

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the

shutdown command via Controlword associated PDO.

Send the following message:

COB-ID

Data

207

06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command

via Controlword associated PDO.

Send the following message:

COB-ID

Data

207

07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID

Data

207

OF 00

5. Modes of operation. Select speed mode.

Send the following message (SDO access to object 6060n, 8-bit value 3n):

COB-ID

Data

607

2F 60 60 00 03 00 00 00

6. Target Velocity. Set speed to 15 IU.

Send the following message (SDO access to object 60FFn, 32-bit value Fn):

COB-ID

Data

607

23 FF 60 00 00 00 OF 00

The master motor should start rotating with 151U speed.

© Technosoft 2019

iPOS CANopen Programming

7. Master Settings. Set the drive as master and program it to send its reference to axis 6.

Send the following message (SDO access to object 2010n 32-bit value 00008206n):

COB-ID

Data

607

2B 10 20 00 06 82 00 00

Part2: Start an Electronic Gearing Slave on CAN
1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID

Data

0

0106

2,

Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID

Data

206

06 00

3.

Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command

via Controlword associated PDO.

Send the following message:

COB-ID Data
206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID

Data

206

OF 00

5. External reference type. Slave receives reference through CAN.

Send the following message (SDO access to object 201Dn):

COB-ID

Data

606

2B 1D 20 00 01 00 00 00

6. Modes of operation. Select Electronic Gearing mode.

Send the following message (SDO access to object 6060n, 8-bit value -1):

COB-ID

Data

606

2F 60 60 00 FF 00 00 00

7. Master resolution. Set the master resolution.

Send the following message (SDO access to object 6060n, 32-bit value 2000):

COB-ID

Data

606

231220 00 DO 07 00 00

8. Electronic gearing multiplication factor.
Set EG numerator to 1.

Send the following message (SDO access to object 2013n,sub-index 1, 16-bit value 1):

COB-ID

Data

606

2B 13 20 01 01 00 00 00

Set EG denominator to 1.

Send the following message (SDO access to object 2013n,sub-index 2, 16-bit value 1):

COB-ID

Data

606

2B 13 20 02 01 00 00 00

9. Enable EG slave in Controlword associated PDO.

Send the following message:

COB-ID

Data

206

1F 00

The slave motor should start rotating with the same speed as the master motor.

© Technosoft 2019

iPOS CANopen Programming

13 Electronic Camming Position (ECAM) Mode

13.1 Overview

In Electronic Camming Position, the drive executes a cam profile function of the position of an electronic camming
master. The cam profile is defined by a cam table — a set of (X, Y) points, where X is cam table input i.e. the position of
the electronic camming master and Y is the cam table output i.e. the corresponding slave position. Between the points,
the drive performs a linear interpolation.

The electronic camming slave can get the position information from the electronic camming master via CANbus
communication channel, from another Technosoft drive set as electronic camming master with object Master Settings
(index 2010n). The position is sent using TechnoCAN, an extension of the CANopen protocol, developed by Technosoft.

The reference type is received online via communication channel and it is set with object External Reference Type
(index 201Dn). The electronic camming position mode can be: relative (if Controlword.6 = 0) or absolute (if
Controlword.6 = 1).

In the relative mode, the output of the cam table is added to the slave actual position. At each slow loop sampling period
the slave computes a position increment dY =Y — Yold. This is the difference between the actual cam table output Y
and the previous one Yold. The position increment dY is added to the old demand position to get a new demand position.
The slave detects when the master position rolls over, from 360 degrees to O or vice-versa and automatically
compensates in dY the difference between Ymax and Ymin. Therefore, in relative mode, you can continuously run the
master in one direction and the slaves will execute the cam profile once at each 360 degrees with a glitch-free transition
when the cam profile is restarted.

When electronic camming is activated in relative mode, the slave initializes Yold with the first cam output computed:
Yold =Y = f(X). The slave will keep its position until the master starts to move and then it will execute the remaining
part of the cam. For example if the master moves from X to Xmax, the slave moves with Ymax - Y.

In the absolute mode, the output of the cam table Y is the demand position to reach.

Remark: The absolute mode must be used with great care because it may generate abrupt variations on the slave
demand position if:

Slave position is different from Y at entry in the camming mode

Master rolls over and Ymax < Ymin

In the absolute mode, you can introduce a maximum speed limit to protect against accidental sudden changes of the
positions to reach. The feature is activated by setting Controlword.5=1 and the maximum speed value in object Profile
Velocity (index 6081n).

Typically, the cam tables are first downloaded into the EEPROM memory of the drive by the CANopen master or with
EasyMotion Studio. Then using the object CAM table load address (index 2019n) they are copied in the RAM address
set in object CAM table run address (index 201An). It is possible to copy more than one cam table in the drive/motor
RAM memory. When the ECAM mode is activated, it uses the CAM table found at the RAM address contained in CAM
table run address.

A CAM table can be shifted, stretched or compressed.

13.1.1 Controlword in electronic camming position mode

MSB LSB
See See Activate Enable
6040 Halt 6040 Abs / Rel Speed Electronic See 6040n
n n Limitation Camming Mode
15 9 8 7 6 5 4 3 0
Table 13.1.1 — Controlword bits for electronic camming position mode
Name Value Description
. Do not start operation
Enable Electronic 0->1 Start electronic camming procedure

Camming Mode 1->0 Do nothing (does not stop current procedure)

Do not limit speed when entering absolute electronic camming mode
Limit speed when entering absolute electronic camming mode at the

Activate Speed

Mol ! value set in profile velocity (ONLY for absolute mode)
Perform relative camming mode — when entering the camming
0 mode, the slave will compute the cam table relative to the starting
Abs / Rel moment.
Perform absolute camming mode — when entering the camming
mode, the slave will go to the absolute position on the cam table
Halt 0 Execute the instruction of bit 4
1 Stop drive with profile acceleration

© Technosoft 2019 167 iPOS CANopen Programming

13.1.2 Statusword in electronic camming position mode

MSB LSB
Following See Target
See 6041h error Reserved 6041r reached See 6041n
15 4 13 12 11 10 9 0

Table 13.1.2 — Statusword bits for electronic camming position mode

Name Value Description
0 Halt = 0: Always O
Target reached Halt = 1: Drive decelerates
9] Halt = 0: Always 0
Halt = 1: Velocity of drive is 0
. 0 No following error
Following error -
1 Following error occurred

13.2 Electronic Camming Position Mode Objects

13.2.1 Object 2019n: CAM table load address

This is the load address of the CAM table. The CAM table is stored in EEPROM memory of the drive starting from the
load address. The initialization of the electronic camming mode requires the CAM table to be copied from the EEPROM
memory to the RAM memory of the drive, starting from the run address, set in object 201An, for faster processing. The
copy is made every time object 2019y is written by SDO access.

Remark: The CAM table run address object must be set before writing the object CAM table load address to assure

a proper copy operation from EEPROM to RAM memory.

Object description:

Entry description:

13.2.2 Object 201An: CAM table run address

Index 2019n

Name CAM table load address

Object code VAR

Data type UNSIGNED16

Access RW

PDO mapping No

Units -

Value range UNSIGNED16

D Variable depending on motor +
efault value f) :

eedback configuration

This is the run address of the CAM table e.g. the RAM address starting from which the CAM table is copied into the
RAM during initialization of the electronic camming mode. (See also 2019n).

Object description:

Entry description:

Index 201An

Name CAM table run address
Object code VAR

Data type UNSIGNED16

Access RW

PDO mapping No

Units -

Value range UNSIGNED16

Default value 9EQOn

© Technosoft 2019

168

iPOS CANopen Programming

13.2.3 Object 201Bn: CAM offset

This object may be used to shift the master position in electronic camming mode. The position actually used as X input
in the cam table is not the master actual position (2017x) but (master actual position — CAM offset) computed as modulo
of master resolution (2012n) The CAM offset must be set before enabling the electronic camming mode. The CAM offset

is expressed in increments.

Object description:
Index 201Bn
Name CAM offset
Object code VAR
Data type UNSIGNED32
Entry description:
Access RW
PDO mapping No
Value range 0...2%1
Default value 0

13.2.4 Object 206Bn: CAM: input scaling factor

You can use this scaling factor in order to achieve a scaling of the input values of a CAM table. Its default value of

00010000n corresponds to a scaling factor of 1.0.

Object description:
Index 206Bn
Name CAM input scaling factor
Object code VAR
Data type FIXED32
Entry description:
Access RW
PDO mapping Possible
Units -
Value range FIXED32
Default value 00010000n

13.2.5 Object 206Ch: CAM: output scaling factor

You can use this scaling factor in order to achieve a scaling of the output values of a CAM table. Its default value of

00010000n corresponds to a scaling factor of 1.0.

Object description:
Index 206Ch
Name CAM output scaling factor
Object code VAR
Data type FIXED32
Entry description:
Access RW
PDO mapping Possible
Units -
Value range FIXED32
Default value 00010000n

© Technosoft 2019

169

iPOS CANopen Programming

13.2.6 Building a CAM profile and saving it as an .sw file example

Build your own cam profile in any program you like.

In this example, we have used MS Excel.

Figure 13.2.1. MS Excel interface

The numbers in the columns represent the input and output of the cam file. They are position points represented in the
drive’s internal units. Let us say that we have a 500 line quadrature encoder on the motor. This means that we will have
2000 counts per motor revolution. So the drive will rotate the rotor once if it receives a position command of 2000 internal
units, or it will return 2000 internal units if the rotor turned once.

The first column represents the input position. It is a series of numbers that represent an interpolation step. Meaning
that the difference between the values must be a number from the following: 2°, 21, 22, 23, 24, 25, 26 and 27. So let us
say that we choose interpolation step of 2° (64). The first number in the first column must be 0, the second number must
be 64,the third number must be 128 and so on.

The second column represents the Output of the cam file. This number can be anything that fits in an Integer32 bit
variable.

For example, let us say we have in the first column the number 640 (which is a multiple of 26) and in the second column
we have the number 4000. This means that if the master is at position 640 (internal units), the slave must be at the
position 4000 (internal units).

70000

60000

50000

40000 +

30000 +

20000 +

10000 -

0 T T T T T
10000 20000 30000 40000 50000 60000 70000

-10000

© Technosoft 2019 170 iPOS CANopen Programming

Figure 13.2.2. Cam example

After the cam is ready, save it as Text (Tab delimited) (*.txt) file.

Figure 13.2.3. Save As example.

Once you have your cam file saved, start EasyMotion Studio, even the demo version.

Press New button and select your drive type.

Setup Communication Wiew Help

DEH S| ceoe B (X LTINS ?

1. 5 » iPOS3602-Wa b
2, Plug In Drives » P s . B Closed Loop ¥
@ %, Open Frame Drives # 3 Phase Stepper Openloop | Load Sensor - Mone or Incremental Encoder
4, Closed Frame Drives » Brushed Mator
i 5. Inteligent Motors 4 Brushless Linear Motor
Z0pen 6. Motion Controllers— » Brushless Rotary Mokar
- 7 Other »
I]

Figure 13.2.4. Choose drive configuration.

After the project opens, select CAM Tables tab from the left of the screen. Press the import button and choose your
recently saved cam file (see Figure 13.2.5).

E Project : --EI @I
= [Untitled CAM Tables
= Untitled Application
S Setup ‘
= M Motion
[f0 Homing Modes Selected Load. ‘ Import ... Available |
[B1 Functions

[4] Interrupts
[[e:f CAM Tables

HE A

Free buffer space m

Figure 13.2.5. CAM tab.

T ESM demo version available in download section here.

© Technosoft 2019 171 iPOS CANopen Programming

http://www.technosoftmotion.com/en/motion-software/easymotion-studio#downloads

If the CAM file loaded, it should look like this:

&) EasyMotion Studio - Untitled [_ O]

Project Application Commurication Wiew Control Panel indow Help

Do S @0k co®|faalX|THETL|S 2

R e =
IR Project [_[OIx]
=] Eﬁ Untitled a
[B8 Untitled Application unwersal—cam3
S Setup Y
= M Motion Import
A Masterstartvatue [[- |
1 Functions 16248 DD Export ..
31 Interrupts . . g
5 [CAM Tables Interpolation step: 2+ I 192 i]
| — égg B
0
Y value I 384 0
445 0
S5 22, 512 0
576 0
Remove | Update 640 u]
704 0
1025 768 0
Tabhle length I o o =
1e3
| —
1
(i 15 30 45 &0
x1e3
Ready [oFfline [|IDMEE0-2ELET | [SetupID 0531 7
Figure 13.2.6. CAM file loaded.
= Untitled Application
s Setup h
= M Motion
[Homing Modes
[E1 Functions

After loading the CAM file successfully, click over the Setup tab and load your saved setup”.

=] Untitled Application
S Setup
= M Motion \
{1 Homing Modes
[E1 Functions

Click the tab with the name of the application
Press the memory settings button (like in the figure below).

Application General Information

S Setup

= M Mation Application 1D:
(M Horing Modes o

[B1 Functions

(@ Inkerrupks
[l (& M Tables Azis number: |55 - kemary Settings...

9] , universal_cam3

Drive: |DMEE0-SEIET
Product ID: P043.002 E103
Firmware I1D: F505A

Figure 13.2.7. Memory Settings location.

In the window below, see if necessary CAM space is larger than reserved cam space. If it is, write a slightly larger
number than the necessary CAM space in the reserved one (Figure below).

Memory Settings

CAM Tables

Space reserved for CAM Tables: |E|3EB H G—
Space needed for Ak Tables 0798 H Owerflow! [nsufficient space for Cam Tﬂes

" To create a setup file, please check your drive’s user manual.

© Technosoft 2019 172 iPOS CANopen Programming

Figure 13.2.8. Adjusting the necessary CAM space.

In Memory Settings window look inside EEPROM memory section under CAM Tables. The first number is the cam table
Load Address that must be set also in object 2019 afterwards.

Memory Settings

— CAk Tables

Space reserved for Cak Tables: Im H
Space needed for CAM Tables 0808 H

— TML Progran:
& the same |ocation [EEPROM)

(¢ EEPROM. beggining at address (4000 H and rur from
Download in " R&M section of size I H

" RAM. in a section of size I H

— EEPROM memorny Fiakd memary
4000..5637 - TML Program 9000..903F - PVT Buffer
BE28 5E41 - CaM Tables 9040..97F5 - D ata Acquisitions
BE42..5FFF - Setup Table 97F6..9FFF - CAM Tables

QK I Cancel Help

Figure 13.2.9. Cam table load and run addresses.

Under the RAM memory section the first number in CAM Tables is the cam table Run Address that must also be set
in object 201An afterwards.

Save the project and select Application -> Create EEPROM programmer file -> Motion and Setup... like in the figure
below. Save the EEPROM file that includes your setup and motion (including CAM data) onto your PC.

¥ EasyMotion Studio - Untitled

Project | Application Communication View Control Panel Window Help

O & hew.. bl & ol ot X | T st 88|30 00 | S| ®
— Duplicate

Insert. ..

Edit... —

Delete Digital Outputs

Setup

Matian

o - Application General ||

Ais On F2 . .

s OFF 5 Application 1D:

Reset =

Show slave etrars

Binary Code Viewer... Ctrl+E Axis number: |255 - Wermary Settlngs...l

Create EEPROM Programmer File Maotion and Setup. .. Ea0-GELET
Expork ko THML_LIE... Setup Only. ..

FProduct ID: PO48.002.E103

Figure 13.2.10. Create .sw file.

13.2.6.1 Extracting the cam data from the motion and setup .sw file

Open the recently saved .sw file with any text editor.
Inside the .sw file search for the number that corresponds to the CAM Table load address.

This number shall be delimited by an empty new line just before it (Figure 13.2.11) (the numbers before it represent the
setup data).

Select all these numbers that represent the cam file until you find another empty new line (Figure 13.2.12).

© Technosoft 2019 173 iPOS CANopen Programming

B untitled Application.sw - Not... [i[=] E3

File Edit Format VYiew Help

404 -
SAS7 :II
FFFF

—

Figure 13.2.11. .sw file structure example i) .
Figure 13.2.12. .sw file empty line

Copy all these numbers and save them as a new text file with the extension .sw instead of .ixt.

Now you have a file that can be loaded onto the drive either with THS EEPROM Programmer (supplied free with
EasySetup or ESM) or load it with the help of 20641 2065h objects explained in next sub chapter.

:"'I-,.-' Drive / Motor EEPROM Programmer

Application | Configuration ID | Cormunication Settings |

Shf Files I'l,'l,tsclient'l,C'l,Untitled Application, sw Browse. .. I

Dovnload | Checksum | Werify | Read... |

Last operation result

File \iksclienthC\Untited Application,sw loaded successfully.

Help Close

|On|ine with axis ID' & |Firmware on drive/maotor: FS000 4

Figure 13.2.13. THS EEPROM Programmer.

Note: with the THS EEPROM programmer, you can write the entire setup and motion .sw file, not just the CAM .sw file
created in this example.

13.2.6.2 Downloading a CAM .sw file with objects 2064» and 2065, example

In order to download the data block pointed by the red arrow found in Figure 11.11, first the block start address i.e.
5638n must be set using an SDO access to object 2064h:

COB-ID Data
606 23 64 20 00 08 00 38 56

The above configuration command also indicates that the next read or write operation shall be executed with drive’s
EEPROM memory using 16-bit data and auto increment of address. All the numbers from the lines after 5638h until the
following blank line represent data to write in the EEPROM memory at consecutive addresses starting with 5638n. The
data writes are done using an SDO access to object 2065n. First data word C400n is written using:

COB-ID Data

606 23 6520 00 00 C4 00 00
Next data word 0000r is written with:

COB-ID Data

606 23 6520 00 00 00 00 00

do this, until the end the CAM .sw file.

© Technosoft 2019 174 iPOS CANopen Programming

13.3 Electronic camming through CAN example

This example is split in two parts:

Part1: Start an Electronic Camming Slave on CAN

First load a cam table onto the drive as presented in chapterO .
Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data
0 0106

Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the shutdown
command via Controlword associated PDO.

Send the following message:

COB-ID Data
206 06 00

Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command via
Controlword associated PDO.

Send the following message:

COB-ID Data
206 07 00

Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID Data
206 OF 00

External reference type. Slave receives reference through CAN.

Send the following message (SDO access to object 201Dn):

COB-ID Data
606 2B 1D 20 00 01 00 00 00

Cam table load address. Set cam table load address as 5638n.

The cam table load address can be discovered as explained in chapter0 .

Send the following message (SDO access to object 2019n):

COB-ID Data
606 2B 19 20 00 1E 5A 00 00

Cam table run address. Set cam table load address as 97F6h.
The cam table run address can be discovered as explained in chapter 0 .

Send the following message (SDO access to object 201An):

COB-ID Data
606 2B 1A 20 00 F6 97 00 00

Modes of operation. Select Electronic Camming mode.

Send the following message (SDO access to object 6060n, 8-bit value -2):

COB-ID Data
606 2F 60 60 00 FE 00 00 00

Master resolution. Set the master resolution.

Send the following message (SDO access to object 20125, 32-bit value 2000):

COB-ID Data
606 231220 00 DO 07 00 00

Cam offset. Set cam offset to 6000 counts (1770k).

If the master resolution is 2000 counts/revolution, the slave shall start applying the cam when the master is at position
6000 + CamX value.

© Technosoft 2019 175 iPOS CANopen Programming

Send the following message (SDO access to object 201Bn, 32-bit value 1770n):

COB-ID

Data

606

231B 20 007017 00 00

Cam input scaling factor. Set it to 1.

Send the following message (SDO access to object 206Bn, 32-bit value 1):

COB-ID

Data

606

23 6B 20 00 00 00 01 00

Cam output scaling factor. Set it to 1.

Send the following message (SDO access to object 206Ch, 32-bit value 1):

COB-ID

Data

606

23 6C 20 00 00 00 01 00

Enable ECAM slave mode in Controlword associated PDO.

Send the following message:

COB-ID

Data

206

3F 00

The slave shall start moving and applying the cam after the master starts.

Part2: Start an electronic camming master on CAN.
1. Start remote node. Send a NMT message to start the node id 7.

Send the following message:

COB-ID Data
0 0107

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data
207 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID

Data

207

07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID

Data

207

OF 00

5. Modes of operation. Select speed mode.

Send the following message (SDO access to object 6060n, 8-bit value 3n):

COB-ID

Data

607

2F 60 60 00 03 00 00 00

6. Target Velocity. Set speed to 15 IU.

Send the following message (SDO access to object 60FFn, 32-bit value Fn):

COB-ID

Data

607

23 FF 60 00 00 00 OF 00

The master motor should start rotating with 15IU speed.
7. Master Settings. Set the drive as master and program it to send it's reference to axis 6.

Send the following message (SDO access to object 607An 32-bit value 00002710n):

COB-ID

Data

607

2B 10 20 00 06 80 00 00

After the master is at position 6000 IU (cam offset), the slave (axis 06) shall rotate depending on the set cam values.

© Technosoft 2019

iPOS CANopen Programming

14 External Reference Position Mode

14.1 Overview

In this operating mode, the drive performs position control with the demand position read from the external reference
provided by another device.

There are 2 types of external references:

Analogue — read by the drive via a dedicated analogue input (12-bit resolution)

Online — received online via the CAN bus communication channel from the CANopen master in object External On-line
Reference (index 201Ch)

The reference type is selected with object External Reference Type (index 201Dn).

In external reference position mode with analogue or online reference, you can limit the maximum speed at sudden
changes of the position reference and thus to reduce the mechanical shocks. This feature is activated by setting
Controlword.6=1 and the maximum speed value in object Profile Velocity (index 6081n).

14.1.1 Controlword in external reference position mode

MSB LSB
See Activate Speed Enable External
See6040n Halt gn4q, Reserved | iiation Position Mode el
15 9 8 7 6 5 4 3 0
Table 14.1.1 — Controlword bit description for External Reference Position mode
Name Value Description
. 0 No action
Enable External Position Mode 0->1 External position mode active
0 Do not limit speed on the inactive to active mode transition

Activate Speed Limitation 1 Limit speed when enabling the External Position mode with
the value set in object 6081 n
0 Execute the instruction of bit 4

1 Stop drive with profile acceleration

Halt

In order to correctly set an external reference position mode, you have to set the way the reference is received (either
on-line or analogue), using the object 201Dn, External Reference Type.

14.1.2 Statusword in external reference position mode

MSB LSB
See 6041n Following g corved See 6041, larget See 6041n
error reached
15 14 13 12 11 10 9 0

Table 14.1.2 — Statusword bit description for External Reference Position mode

Name Value Description

0 Halt = 0: Always 0
Halt = 1: Drive decelerates
Halt = 0: Always 0
Halt = 1: Velocity of drive is 0
No following error
Following error occurred

Target reached
1

-~lo

Following error

14.2 External Reference Position Mode Objects

14.2.1 Object 201Ch: External On-line Position Reference

This object is used to set the reference in case the External Reference Type (Object 201Dn) is set for online. The unit
for this object is the internal unit defined for each external reference mode (position / speed / torque).

For the external reference position mode, all 32bits are used.

© Technosoft 2019 177 iPOS CANopen Programming

Object description:

Index 201Cn
Name External online reference
Object code VAR
Data type INTEGER32
Entry description:
Access RW
PDO mapping Possible
Units Internal, operating mode dependent
Value range INTEGER32
Default value 0

14.3 External reference position profile example

1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID

Data

0

0106

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the

shutdown command via Controlword associated PDO.

Send the following message:

COB-ID

Data

206

06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.
Send the following message:

COB-ID Data
206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID

Data

206

OF 00

5. External reference type. Slave receives reference through CAN.

Send the following message (SDO access to object 201Dn):

COB-ID

Data

606

2B 1D 20 00 01 00 00 00

6. Mode of operation. Select External reference position mode.

Send the following message (SDO access to object 6060n, 8-bit value FDn):

COB-ID

Data

606

2F 60 60 00 FD 00 00 00

7. Enable external position mode. Set bit 4 from 0 to 1 in Controlword associated PDO.

Send the following message:

COB-ID

Data

206

1F 00

8. Move to 500 IU . Write 500 (0x01F4) into the external online reference object. The motor will jump in 1 control

loop (1ms default) from its actual position to the absolute value 500 IU.
Send the following message (SDO access to object 201Ch 32-bit value 000001F4):

COB-ID

Data

606

23 1C 20 00 F4 01 00 00

9. Move to 1000 IU . Write 1000 (OxO3E8) into the external online reference object. The motor will jump in 1

control loop (1ms default) from its actual position to the absolute value 1000 IU.

Send the following message (SDO access to object 201Ch 32-bit value 000003E8h):

© Technosoft 2019

iPOS CANopen Programming

COB-ID Data
606 23 1C 20 00 F4 01 00 00

Remark: if the drive is at position 0 and 500 is written in 201Ch while in external position mode, the motor will jump to
position 500 in 1 control loop. This means that the velocity of the motor is 500 IU. To avoid moving with too high
velocities, bits of control word can be set. With bit 5 set, the maximum velocity between external reference points
received at 201Ch will be the speed value defined in object 6081h.

15 External Reference Speed Mode

15.1 Overview

In this mode, the drive performs speed control with demand velocity read from the external reference provided by other
devices.

There are 2 types of external references:

Analogue — read by the drive via a dedicated analogue input (12-bit resolution)

Online — received online via the CAN bus communication channel from the CANopen master in object External On-line
Reference (index 201Ch)

The reference type is selected with object External Reference Type (index 201Dn).

In external reference speed mode, you can limit the maximum acceleration at sudden changes of the speed reference
and thus to get a smoother transition. This feature is activated by setting Controlword.5=1 and the maximum acceleration
value in object Profile Acceleration (6083n).

15.1.1 Controlword in external reference speed mode

MSB LSB
Activate
See 6040n Halt See Reserved Acceleration Enaple =~ External See 6040n
6040n Limitati Speed Mode
imitation
15 9 8 7 6 5 4 3 0

Table 15.1.1 — Controlword bit description for External Reference Speed Mode

Name Value Description
Enable External 0 No action
Speed Mode 0->1 External speed mode active

Do not limit acceleration on the inactive to active mode transition
Limit acceleration when enabling the External Speed mode with the

Activate Speed

Pl ! value defined in object 60831
Halt 0 Execute the instruction of bit 4
1 Stop drive with profile acceleration

15.1.2 Statusword in external reference speed mode

MSB LSB
Max slippage See Target
See 6041h error Speed 60411 reached See 6041n
15 14 13 12 11 10 9 0

Table 15.1.2 — Statusword bit description for External Reference Speed Mode

Name Value Description

0 Halt = 0: Always 0
Halt = 1: Drive decelerates
Halt = 0: Always 0
Halt = 1: Velocity of drive is 0
Speed is not equal to 0
Speedis equal to 0
Maximum slippage not reached
Maximum slippage reached

Target reached

Speed

Max slippage
error

Aol -

Remark: In order to set/ reset bit 12, the object from index 606Fn, velocity threshold from profile velocity mode will be
used. If the actual velocity of the drive / motor is below the velocity threshold, then bit 12 will be set, else it will be reset.

© Technosoft 2019 179 iPOS CANopen Programming

15.2 External reference torque mode objects

15.2.1 Object 201Ch: External On-line Speed Reference

This object is used to set the reference in case the External Reference Type (Object 201Dn) is set for online. The unit
for this object is the internal unit defined for each external reference mode (position / speed / torque).

For the external reference speed mode, the velocity value is given in internal units. They are encoder increments/Sample
loop. The default Sample loop is 1ms. The velocity variable is 32 bits long and it receives 16.16 data. The MSB takes
the integer part and the LSB takes the factionary part.

Example: for a target speed of 50.00 1U, 0x00320000 must be set in 201Ck.

Object description:
Index 201Cn
Name External online reference
Object code VAR
Data type INTEGER32
Entry description:
Access RW
PDO mapping Possible
Units Internal, operating mode dependent
Value range INTEGER32
Default value 0

15.3 External reference speed profile example

Remark: any speed profile mode can be run only if the speed loop is active in setup (by default it is disabled).
To enable the Current + Speed loop, in Drive setup, select under Control mode the speed radio button:

Control mode
" Pasition

" Torque

Advanced

After the speed is selected, the tuning for the speed loop must be done.

To enable the Current + Speed + Position loop, in Drive setup, select under Control mode the Position radio button and
then click the Advanced button. Under control scheme, select the “Close position, speed and current loop” radio button.

7 Cloge only pozition and curent loop

& iion, speed and cuent loon . o
ERSR POSION. SERSC AN SMIBESE After all three loops are selected, the tuning for the speed and position must be done
again.

1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID Data
0 01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the
shutdown command via Controlword associated PDO.

Send the following message:

COB-ID Data
206 06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID Data
206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:
| COB-ID Data |

© Technosoft 2019 180 iPOS CANopen Programming

[206

OF 00

5. External reference type. Slave receives reference through CAN.

Send the following message (SDO access to object 201Dn):

COB-ID

Data

606

2B 1D 20 00 01 00 00 00

6. Mode of operation. Select External reference speed mode.

Send the following message (SDO access to object 6060n, 8-bit value FCh):

COB-ID

Data

606

2F 60 60 00 FC 00 00 00

7. Enable external speed mode. Set bit 4 from 0 to 1 in Controlword associated PDO.

Send the following message:

COB-ID

Data

206

1F 00

8. Set velocity to 2 IU . Write 2 * 65536 (0x20000) into the external online reference object. The motor will start
rotating with the speed 2 IU in 1 control loop (1ms default) from its actual speed to the value 2 1U.

Send the following message (SDO access to object 201Ch 32-bit value 00020000r):

COB-ID

Data

606

23 1C 20 00 00 00 02 00

9. Set velocity to 8 IU . Write 8 * 65536 (0x80000) into the external online reference object. The motor will start
rotating with the speed 8 IU in 1 control loop (1ms default) from its actual speed to the value 8 1U.

Send the following message (SDO access to object 201Ch 32-bit value 00080000nr):

COB-ID

Data

606

23 1C 20 00 00 00 08 00

16 External Reference Torque Mode

16.1 Overview

In this mode, the drive is controlled in torque mode and the external reference is interpreted as torque/current reference.
There are 2 types of external references:

Analogue — read by the drive via a dedicated analogue input (12-bit resolution)
Online — received online via the CAN bus communication channel from the CANopen master in Object 201Ch: External

On-line Position Reference.

The reference type is selected with Object 201Dh: External Reference Type.

16.1.1 Controlword in external reference torque mode
MSB LSB
See Enable External
See 6040n Halt 6040 Reserved Reserved Torque Mode See 6040n
15 9 8 7 6 5 4 3 0
Table 16.1.1 — Controlword bit description for External Reference Torque Mode
Name Value Description
Enable External 0 No action
Torque Mode 0->1 External torque mode active
Halt 0 Execute the instruction of bit 4
1 Stop drive — set torque reference to 0
16.1.2 Statusword in external reference torque mode
MSB LSB
See 6041h Reserved Reserved See 6041n VI See 6041n
reached
15 14 13 11 10 9 0

© Technosoft 2019

181

iPOS CANopen Programming

Table 16.1.2 — Statusword bit description for External Reference Torque Mode

Name Value Description

Target reached Always 0

16.2 External reference torque mode objects

16.2.1 Object 201Ch: External On-line Torque Reference

This object is used to set the reference in case the External Reference Type (Object 201Dn) is set for online. The unit
for this object is the internal unit defined for each external reference mode (position / speed / torque).

For the external reference torque mode, the torque (current) command is given in the MSB of the 32bits of data that
must be written in 201Ch.

Object description:
Index 201Cn
Name External online reference
Object code VAR
Data type INTEGER32
Entry description:
Access RW
PDO mapping Possible
Units Internal, operating mode dependent
Value range INTEGER32
Default value 0

The computation formula for the current [IU] in [A] is:
65520 - current[A]
2 - Ipeak

curent[IU] =

where Ipeak is the peak current supported by the drive and current[IU] is the command value for object 201Ch that must
be set in the MSB of the 32bit value.

16.2.2 Object 6077n: Torque actual value

This is used to provide the actual value of the current running through the motor. It corresponds to the instantaneous
torque in the motor. The value is given in 1U.

Object description:
Index 6077n
Name Torque actual value
Object code VAR
Data type INTEGER16
Entry description:
Access RO
PDO mapping Yes
Value range UNSIGNED16
Default value No

The computation formula for the current [IU] in [A] is:
2 - Ipeak
65520
where Ipeak is the peak current supported by the drive and current[IU] is the read value from object 607 7.

current[A] = -curent[1U]

© Technosoft 2019 182 iPOS CANopen Programming

16.2.3 Object 207En: Current actual value'

The object displays the motor current actual value. This value is given in current internal units.

Object description:

Entry description:

The computation formula for the current [IU] in [A] is:
2 - Ipeak

current[A] =

Index 207En

Name Current actual value
Object code VAR

Data type Integer16

Access RO

PDO mapping YES

Units -

Value range -32768 ... 32767
Default value No

-curent[1U]

65520

where Ipeak is the peak current supported by the drive and current[IU] is the read value from object 207Er.

16.3 External reference torque profile example

1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID

Data

0

0106

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the

shutdown command via Controlword associated PDO.

Send the following message:

COB-ID

Data

206

06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command

via Controlword associated PDO.

Send the following message:

COB-ID

Data

206

07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.

Send the following message:

COB-ID

Data

206

OF 00

5. External reference type. Slave receives reference through CAN.

Send the following message (SDO access to object 201Dn):

COB-ID

Data

606

2B 1D 20 00 01 00 00 00

6. Mode of operation. Select External reference torque mode.

Send the following message (SDO access to object 6060n, 8-bit value FBh):

COB-ID

Data

606

2F 60 60 00 FB 00 00 00

7. Enable external torque mode. Set bit 4 from 0 to 1 in Controlword associated PDO.

Send the following message:

COB-ID

Data

206

1F 00

' Available only with firmwares F5081/F5091 and above.

© Technosoft 2019

iPOS CANopen Programming

8. Set torque to 0.2A for an iPOS4808 (any version) . Write 328 * 65536 (0x1480000) into the external online
reference object. The motor will start applying a positive 0.2A current on the motor in 1 control loop (1ms
default) from its actual value.

Send the following message (SDO access to object 201Ch 32-bit value 01F80000n):
COB-ID Data
606 23 1C 20 00 00 00 48 01

9. Set torque to 0.4A for an iPOS4808 (any version) . Write 655 * 65536 (0x28F0000) into the external online
reference object. The motor will start applying a positive 0.2A current on the motor in 1 control loop (1ms
default) from its actual value.

Send the following message (SDO access to object 201Ch 32-bit value 028F0000):
COB-ID Data
606 23 1C 20 00 00 00 8F 02

10. Read the value of torque (current) actual value . Read object 6077n.

Send the following message (SDO access to read object 6077n):

COB-ID Data
606 40 77 60 00 00 00 00 00
The read value should be the near the one commanded previously with object 201Ch.

© Technosoft 2019 184 iPOS CANopen Programming

17 Touch probe functionality"

17.1 Overview

The Touch probe functionality offers the possibility to capture the motor current position when a configurable digital input
trigger event happens.

Remark: do not use the touch probe functionality objects during a homing procedure. It may lead to incorrect results.

17.2 Touch probe objects

17.2.1 Object 60B8x: Touch probe function

This object indicates the configuration function of the touch probe.

Object description:
Index 60B8nh
Name Touch probe function
Object code VAR
Data type UNSIGNED16
Entry description:
Access RW
PDO mapping Yes
Value range 0 ... 65535
Default value 0

Table 17.2.1 — Bit Assignment of the Touch probe function

Bit Value Description
14,15 - Reserved
13 0 Switch off sampling at negative edge of touch probe 2
1 Enable sampling at negative edge of touch probe 2*
12 0 Switch off sampling at positive edge of touch probe 2
1 Enable sampling at positive edge of touch probe 2*
00p Trigger with touch probe 2 input (LSN input)
01p Trigger with zero impulse signal
11,10
106 Reserved
11p Reserved
9 0 Trigger first event
1 Reserved
8 0 Switch off touch probe 2
1 Enable touch probe 2
- Reserved
0 Enable limit switch functionality. The motor will stop, using quickstop
6 deceleration, when a limit switch is active.
1 Disable limit switch functionality. The motor will not stop when a limit switch is
active.
5 0 Switch off sampling at negative edge of touch probe 1
1 Enable sampling at negative edge of touch probe 1*
4 0 Switch off sampling at positive edge of touch probe 1
1 Enable sampling at positive edge of touch probe 1*
006 Trigger with touch probe 1 input (LSP input)
392 01b Trigger with zero impulse signal
’ 10p Reserved
11b Reserved
1 0 Trigger first event
1 Reserved
0 0 Switch off touch probe 1
1 Enable touch probe 1

" This feature is available since firmware revision F

© Technosoft 2019 185 iPOS CANopen Programming

*Remarks:

The position cannot be captured on both positive and negative edges simultaneously using the zero impulse signal as
a trigger.

The position cannot be captured when touch probe 1 and 2 are active and the trigger is set on the zero impulse signal.
The following bit settings are reserved:

-Bit 3 and Bit2 = 1;

-Bit 13 and Bit12 = 1;

-Bit11 and Bit2 = 1;

The homing procedures also utilize the capture function. Using this object during a homing procedure may lead to
unforeseen results.

17.2.2 Object 60B9n: Touch probe status

This object provides the status of the touch probe.

Object description:

Index 60B9n

Name Touch probe status

Object code VAR

Data type UNSIGNED16
Entry description:

Access RO

PDO mapping Yes

Value range 0 ... 65535

Default value 0

Table 17.2.2 — Bit Assignment of the Touch probe status

Bit Value Description
111015 Reserved
10 Touch probe 2 no negative edge value stored
Touch probe 2 negative edge position stored in object 60BDn
Touch probe 2 no positive edge value stored
Touch probe 2 positive edge position stored in object 60BCh
Touch probe 2 is switched off
Touch probe 2 is enabled
Reserved
Limit switch functionality enabled.
Limit switch functionality disabled.
Reserved
Touch probe 1 no negative edge value stored
Touch probe 1 negative edge position stored in object 60BBh
Touch probe 1 no positive edge value stored
Touch probe 1 positive edge position stored in object 60BAn
Touch probe 1 is switched off
Touch probe 1 is enabled

Note: Bit 1 and bit 2 are set to 0 when touch probe 1 is switched off (object 60B8h bit 0 is 0). Bit 9 and 10 are set to 0
when touch probe 2 is switched off (object 60B8h bit 8 is 0). Bits 1,2,9 and 10 are set to 0 when object 60B8h bits 4,5,12
and 13 are set to 0.

9

3to5

1

2O OO | Ao | OO0

0

17.2.3 Object 60BAn: Touch probe 1 positive edge

This object provides the position value of the touch probe 1 at positive edge.

Object description:
Index 60BAn
Name Touch probe 1 positive edge
Object code VAR
Data type INTEGER32
Entry description:
Access RO
PDO mapping YES
Value range -281,..2%11
Default value -

© Technosoft 2019 186 iPOS CANopen Programming

17.2.4 Object 60BBh: Touch probe 1 negative edge

This object provides the position value of the touch probe 1 at negative edge.
Object description:

Index 60BBh
Name Touch probe 1 negative edge
Object code VAR
Data type INTEGER32
Entry description:
Access RO
PDO mapping YES
Value range =231, .2%11
Default value -

17.2.5 Object 60BCh: Touch probe 2 positive edge

This object provides the position value of the touch probe 2 at positive edge.
Object description:

Index 60BCh
Name Touch probe 2 positive edge
Object code VAR
Data type INTEGER32
Entry description:
Access RO
PDO mapping YES
Value range -231,..2%11
Default value -

17.2.6 Object 60BDn: Touch probe 2 negative edge

This object provides the position value of the touch probe 2 at negative edge.
Object description:

Index 60BDn
Name Touch probe 2 negative edge
Object code VAR
Data type INTEGER32
Entry description:
Access RO
PDO mapping YES
Value range -231,..2%11
Default value -

17.2.7 Object 2104x": Auxiliary encoder function

This object configures the auxiliary feedback position capture on the zero impulse signal.

Object description:
Index 2104h
Name Auxiliary encoder function
Object code VAR
Data type UNSIGNED16
Entry description:
Access RW
PDO mapping Yes
Value range 0 ... 65535
Default value 0

' Object 2104+ applies only to drives which have a secondary feedback input with an index signal

© Technosoft 2019 187

iPOS CANopen Programming

Table 17.2.3 — Bit Assignment o

f the Auxiliary encoder function

Bit Value Description
15..6 - Reserved
5 0 Switch off sampling at negative edge of touch probe
1* Enable sampling at negative edge of touch probe
4 0 Switch off sampling at positive edge of touch probe
1* Enable sampling at positive edge of touch probe
3 - Reserved
5 0 Reserved
1 Trigger with zero impulse signal
1 - Reserved
0 0 Switch off touch probe
1 Enable touch probe

*Remark

The position cannot be captured on both positive and negative edges simultaneously using the zero impulse signal as

a trigger.

17.2.8 Object 2105x: Auxilia

ry encoder status

This object provides the status o

f the auxiliary feedback touch probe.

Object description:
Index 2105n
Name Auxiliary encoder status
Object code VAR
Data type UNSIGNED16
Entry description:
Access RO
PDO mapping Yes
Value range 0 ... 65535
Default value 0

Table 17.2.4 — Bit Assignment of the Auxiliary encoder status

Bit Value Description
15t0 3 - Reserved

5 0 Auxiliary feedback touch probe no negative edge value stored

1 Auxiliary feedback touch probe negative edge position stored in object 2107n
1 0 Auxiliary feedback touch probe no positive edge value stored

1 Auxiliary feedback touch probe positive edge position stored in object 2106n

0 0 Auxiliary feedback touch probe is switched off
1 Auxiliary feedback touch probe is enabled

Note: Bit 1 and bit 2 are set to 0 when auxiliary feedback touch probe is switched off (object 2104 bit 0 is 0). Bits 1 and

2 are set to 0 when object 2104n

bits 4 and 5 are set to 0.

17.2.9 Object 2106n2: Auxiliary encoder captured position positive edge

This object provides the position value of the auxiliary feedback captured at positive edge.

Object description:

Index 2106h

Name Auxiliary encoder captured positive
edge

Object code VAR

Data type INTEGER32

' Object 2105 applies only to drives which have a secondary feedback input with an index signal
2 Object 2106n applies only to drives which have a secondary feedback input with an index signal

© Technosoft 2019

188

iPOS CANopen Programming

Entry description:

Access RO

PDO mapping YES
Value range -281,..2%11
Default value -

17.2.10 Object 2107x": Auxiliary encoder captured position negative edge

This object provides the position value of the auxiliary feedback captured at negative edge.

Object description:
Index 2107n
Name Auxn|gry encoder captured position
negative edge
Object code VAR
Data type INTEGER32
Entry description:
Access RO
PDO mapping YES
Value range -281,,.2%11
Default value -

17.3 Touch probe example

In this example, the touch probe 1 will be enabled to capture the position when the positive limit switch LSP is

triggered on the positive edge while moving the motor in trapezoidal mode.

1. Start remote node. Send a NMT message to start the node id 6.

Send the following message:

COB-ID

Data

0

01 06

2. Ready to switch on. Change the node state from Switch on disabled to Ready to switch on by sending the

shutdown command via Controlword associated PDO.

Send the following message:

COB-ID

Data

206

06 00

3. Switch on. Change the node state from Ready to switch on to Switch on by sending the switch on command
via Controlword associated PDO.

Send the following message:

COB-ID Data
206 07 00

4. Enable operation. Change the node state from Switch on to Operation enable by sending the enable operation
command via Controlword associated PDO.
Send the following message:

COB-ID Data
206 OF 00

5. Modes of operation. Select position mode.

Send the following message (SDO access to object 6060n, 8-bit value 1n):

COB-ID Data
606 2F 60 60 00 01 00 00 00

6. Target position. Set the target position to 5 rotations. By using a 500 lines incremental encoder the
corresponding value of object 607An expressed in encoder counts is 2710k.

Send the following message (SDO access to object 607An 32-bit value 00002710n):

COB-ID Data
606 23 7A 60 00 10 27 00 00

7. Target speed. Set the target speed normally attained at the end of acceleration ramp to 2 U (low speed).

" Object 2107x applies only to drives which have a secondary feedback input with an index signal

© Technosoft 2019 189 iPOS CANopen Programming

Send the following message (SDO access to object 60811, 32-bit value 00020000h):

COB-ID

Data

606

23 81 60 00 00 00 02 00

8. Set touch probe function to 0x11. Set touch probe function to enable touch probe 1, touch probe 1 to be the
positive limit switch LSP, capture the position on the positive edge of the signal (when LSP goes low to high).

Send the following message (SDO access to object 6081n, 32-bit value 00020000h):

COB-ID

Data

606

2B B8 60 00 11 00 00 00

9. Read touch probe status. Read touch probe status.

Send the following message (SDO read access to object 60B9h):

COB-ID

Data

606

40 B9 60 00 00 00 00 00

If the read value is 0x0001 it means that touch probe 1 is active (bit0=1) and a capture was detected on the positive
edge (bit1=1).

10. Start the profile.

Send the following message

COB-ID Data
206 1F 00

11. While the motor is moving, trigger the LSP input. The motor should stop.
12. Read touch probe status. Read touch probe status.

Send the following message (SDO read access to object 60B9n):

COB-ID Data
606 40 B9 60 00 00 00 00 00

If the read value is 0x0003 it means that touch probe 1 is active (bit0=1) and no capture was detected on the
positive edge (bit1=0).

13. Read the touch probe 1 positive edge captured value..

Send the following message (SDO read access to object 60BAn):

COB-ID Data
606 40 BA 60 00 00 00 00 00

If the read value should be close to the value of motor actual position (6064h). When the capture was detected, the
motor was moving. The limit switch caused the motor to decelerate and stop after the even occurred.

18 Data Exchange between CANopen master and drives

18.1 Checking Setup Data Consistency

During the configuration phase, a CANopen master can quickly verify using the checksum objects and a reference .sw
file whether the non-volatile EEPROM memory of the iPOS drive contains the right information. If the checksum reported
by the drive does not match the one computed from the .sw file, the CANopen master can download the entire .sw file
into the drive EEPROM using the communication objects for writing data into the drive EEPROM.

In order to be able to inspect or to program any memory location of the drive, as well as for downloading of a new TML
program (application software), three manufacturer specific objects were defined: Object 2064n — Read/Write
Configuration Register, 2065n — Write Data at address specified in 2064h, 20661 — Read Data from address specified in
2064, 2067h — Write data at specified address.

18.2 Image Files Format and Creation

An image file (with extension .sw) is a text file that can be read with any text editor. It contains blocks of data separated
by an empty line. Each block of data starts with the block start address, followed by data values to place in ascending
order at consecutive addresses: first data — to write at start address, second data — to write at start address + 1, etc. All
the data are hexadecimal 16- bit values (maximum 4 hexadecimal digits). Each line contains a single data value. When
less than 4 hexadecimal digits are shown, the value must be right justified. For example, 42 represents 0x0042.

A software file can contain up to 4 sections:

© Technosoft 2019 190 iPOS CANopen Programming

1. TML program
2. setup table
3. product and application ID
4. setup table start address
The .sw software files can be generated either from EasySetup or from EasyMotion Studio.

In EasySetup, you create a .sw file with the command Setup | EEPROM Programmer File... The software file
generated, includes the setup data and the drive/motor configuration ID with the user programmable application ID.

In EasyMotion Studio, you create a .sw file with one of the commands: Application | EEPROM Programmer File |
Motion and Setup or Setup Only. The option Motion and Setup creates a .sw file with complete information including
setup data, TML programs, cam tables (if present) and the drive/motor configuration ID. The option Setup Only
produces a .sw file identical with that produced by EasySetup i.e. having only the setup data and the configuration ID.

The .sw file can be programmed into a drive:

) from a CANopen master, using the communication objects for writing data into the drive EEPROM

. using the EEPROM Programmer tool, which comes with EasySetup but may also be installed separately. The
EEPROM Programmer was specifically designed for repetitive fast and easy programming of .sw files into the
Technosoft drives during production.

18.3 Data Exchange Objects

18.3.1 Object 2064n: Read/Write Configuration Register

Object Read/Write Configuration Register 2064 is used to control the read from drive memory and write to drive memory
functions. This object contains the current memory address that will be used for a read/write operation. It can also be
specified through this object the type of memory used (EEPROM, data or program) and the data type the next read/write
operation refers to. Additionally, it can be specified whether an increment of the memory address should be performed
or not after the read or write operation. The auto-increment of the memory address is particularly important in saving
valuable time in case of a program download to the drive as well when a large data block should be read from the
device.

Object description:
Index 2064n
Name Read/Write configuration register
Object code VAR
Data type UNSIGNED32
Entry description:
Access RW
PDO mapping Possible
Units -
Value range 0...2%1
Default value 0x84

Table 18.3.1 — Read/Write Configuration Register bit description

Bit Value Description
31...16 X 16-bit memory address for the next read/write operation
15...8 0 Reserved (always 0)
7 0 Auto-increment the address after the read/write operation
1 Do not auto-increment the address after the read/write operation
6...4 0 Reserved (always 0)
00 Memory type is program memory
39 01 Memory type is data memory
’ 10 Memory type is EEPROM memory
11 Reserved
1 0 Reserved (always 0)
0 0 Next read/write operation is with a 16-bit data
1 Next read/write operation is with a 32-bit data

18.3.2 Object 2065n: Write 16/32 bits data at address set in Read/Write Configuration Register

The object is used to write 16 or 32-bit values using the parameters specified in object 2064 — Read/Write Configuration
Register. After the successful write operation, the memory address in object 2064+, bits 31...16 will be auto-incremented
or not, as defined in the same register. The auto-incrementing of the address is particularly useful in downloading a
program (software application) in the drives memory.

© Technosoft 2019 191 iPOS CANopen Programming

Object description:

Index 2065n
Name Write data at address set in 2064n
(16/32 bits)

Object code VAR

Data type UNSIGNED32
Entry description:

Access WO

PDO mapping Possible

Units -

Value range 0...2%1

Default value No

The structure of the parameter is the following:

Bit Value Description
3116 0 Reserved if bit 0 of object 2064+ is 0 (operation on 16 bit variables)

X 16-bit MSB of data if bit O of object 2064 is 1 (operation on 32 bit variables)
15...0 X 16 bit LSB of data

18.3.3 Object 2066n: Read 16/32 bits data from address set in Read/Write Configuration Register

This object is used to read 16 or 32-bit values with parameters that are specified in object 2064 — Read/Write
Configuration Register. After the successful read operation, the memory address in object 2064, bits 31...16, will be
auto-incremented or not, as defined in the same register.

Object description:
Index 2066n
Name Read data from address set in 2064
(16/32 bits)
Object code VAR
Data type UNSIGNED32
Entry description:
Access RO
PDO mapping No
Units -
Value range UNSIGNED32
Default value No

The structure of the parameter is the following:

Bit Value Description
31. 16 0 Reserved if bit 0 of object 2064 is 0 (operation on 16 bit variables)

X 16-bit MSB of data if bit 0 of object 2064 is 1 (operation on 32 bit variables)
15...0 X 16 bit LSB of data

18.3.4 Object 2067n: Write data at specified address

This object is used to write a single 16-bit value at a specified address in the memory type defined in object 2064n —
Read/Write Configuration Register. The rest of the bits in object 2064~ do not count in this case, e.g. the memory
address stored in the Read/Write Control Register is disregarded and also the control bits 0 and 7. The object may be
used to write only 16-bit data. Once the type of memory in the Read/Write Control Register is set, the object can be
used independently. If mapped on a PDO, it offers quick access to any drive internal variable.

Object description:

Index 2067n
Name Write data at specified address
Object code VAR
Data type UNSIGNED32
Entry description:
Access WO
PDO mapping Possible
Units -
Value range UNSIGNED32
Default value No

© Technosoft 2019 192 iPOS CANopen Programming

Bit Value Description

31...16 X 16-bit memory address

15...0 X 16 bit data value to be written

18.3.4.1 Writing 16 bit data to a specific address using object 2067, example

Considering the following variable found in variables.cfg in the /Firmwares/F514I folder:

UINT POSOKLIM @0x036A. It means that it is found at address 0x036A.

Write the data 0x1234 to address 0x036A using SDO access to object 2067h:

COB-ID Data
606 23 67 20 00 6A 03 34 12

18.3.5 Object 2069n: Checksum configuration register

This object is used to specify a start address and an end address for the drive to execute a checksum of the E2ROM
memory contents. The 16 LSB of this object are used for the start address of the checksum, and the 16 MSB for the

end address of the checksum.

Note: The end address of the checksum must be computed as the start address to which you add the length of the
section to be checked. The drive will actually compute the checksum for the memory locations between start address

and end address.

The checksum is computed as a 16 bit unsigned addition of the values in the memory locations to be checked. When
the object is written through SDO access, the checksum will be computed and stored in the read-only object 206An.

Object description:
Index 2069n
Name Checksum configuration register
Object code VAR
Data type UNSIGNED32
Entry description:
Access RW
PDO mapping No
Units -
Value range UNSIGNED32
Default value No

The structure of the parameter is the following:

Bit Value Description
31...16 X 16-bit end address of the checksum
15...0 X 16 bit start address of the checksum

18.3.6 Object 206An: Checksum read register

This object stores the latest computed checksum.
Object description:

Index 206An
Name Checksum read register
Object code VAR
Data type UNSIGNED16
Entry description:
Access RO
PDO mapping No
Units -
Value range UNSIGNED16
Default value No
© Technosoft 2019 193 iPOS CANopen Programming

18.4 Downloading an image file (.sw) to the drive using CANopen objects example

The structure of an image file (.sw) is described in paragraph 18.2 and shown in Figure 18.4.1.

In order to download the data block pointed by the red arrow, first the block start address i.e. 5638» must be set using
an SDO access to object 2064n.

e Send the following message: SDO access to object 2064n, 32-bit value 56380008+.

The above configuration command also indicates that next read or write operation shall be executed with drive’s
EEPROM memory using 16-bit data and auto increment of address. All the numbers from the lines after 5638h until the
following blank line represents data to write in the EEPROM memory at consecutive addresses starting with 5638h. The
data writes are done using an SDO access to object 2065n. First data word C400n is written using:

e Send the following message: SDO access to object 2065h, 32-bit value 0000C400k.

From the whole 32bit number, only C400x will be written and 0000n will be ignored because the write operation was
configured for 16bits in object 2065 n.

Next data word 0000s is written with:
Send the following message: SDO access to object 2065h, 32-bit value 00000000n.

[B untitled Application.sw - Not... [[=] E3

File Edit Format View Help

404 -
SA57 ﬁ
FFFF

8000

20

7484

2FB

4010

102

1
0

Figure 18.4.1. .sw file structure example

Continue sending the 16 bit data, until the next blank line from the .sw file. Because the next data after a blank line is
again an address, and the above process repeats. Finally to verify the integrity of the information stored in the drive
EEPROM, checksum objects 20691 and 206An can be used to compare the checksum computed by the drive with that
computed on the master.

When object 2064 bit 7=0 (auto-incrementing is ON), do not read the object
list in parallel with a read/write operation using a script. By reading object
2066n in parallel with another application, the target memory address will be
incremented and will lead to incorrect data writing or reading.

Warning!

18.5 Downloading an image file (.sw) to the drive using CANopen objects C# example code

The code presented below is written in C# language and its structure can be used as an example for other programming
languages.

The program itself works on an IXXAT USB to CAN compact interface, together with their software canAnalyzer, which
provides a tool for running C# scripts.

The code uses two functions that are not detailed in this example:
SendCANmessage(Messageld, MessageData);

The function sends a message over CAN with a configurable COB ID and Data field. The COB ID is declared as a 16bit
integer and the MessageData is declared as a Byte array that can have up to 8 bytes.

Most CAN interfaces offer programming examples that contain such a function.
Wait_for_ID_and_Data(Expected COB ID, Expected DATA);

The function reads the received CAN messages and decides if the Expected COB ID and Expected DATA are the same
as the ones received. It is a BOOL type function, so it returns TRUE if the expected data matched the one received.

Most CAN interfaces offer programming examples that contain a function that reads a CAN message.

© Technosoft 2019 194 iPOS CANopen Programming

If the implementation of such a function is difficult to implement, just replace it with a 4 or 5ms wait time before sending
the next message. This is to make sure that the last SDO write command was read and processed by the drive.

Waiting for an SDO successful write reply from the drive reduces the write time and it is the safest way.

18.5.1

The main script code

It should look like this:

using
using
using
using
using
using
using
using

using

System

System.
System.
System.
System.
System.
System.
System.

CAN.In

Collections.Generic;

Text;

I0;

Threading;

Collections;

Runtime;

Diagnostics;

terface.Services; //this is Jjust an example; replace it with your interface

namespace THS checksum calculator

{

static class Program

{

stat
{

}
priv
{//c
}
priv
{//c
}
priv
{//c
}

ic void Main(string[] args)

int AxisID = 6;
String PathToFile = "c:\\setupl.sw";
Write SWfile (AxisID, PathToFile);

ate static void Write SWfile(int AxisId, String Path)

ode

ate static void SendCANmessage (int MessageID, Byte[] messageData)
ode

ate static bool Wait for ID and Data(int Msgld, Byte[] ExpectedData)
ode

18.5.2 The function Write_SWfile code

private static void Write SWfile(int AxisId, String Path)

address,

{

int

Messageld = 0x600 + AxisId;

console.WriteLine ("Writing SW file from path : " + Path);
console.WriteLine("");
try

{
StreamReader sr = File.OpenText (Path) ;

String strLine;
Byte[] LineData;
Byte[] MessageData;

bool setAddress = true; //because the first line in the .sw is an

start with setAddress TRUE.

© Technosoft 2019 195 iPOS CANopen Programming

while (null != (strLine = sr.ReadLine()))

{

if (strlLine == "") //checks for blank spaces with no data
{
setAddress = true;
continue;
}
if (setAddress) //if setAddress TRUE, set the current file data
stream as address in 2064y.
{

LineData = BitConverter.GetBytes(Intl6.Parse(strLine,
System.Globalization.NumberStyles.HexNumber, null));

MessageData = new Byte[8] { 0x23, 0x64, 0x20, 0x00, 0x08, 0x00,
0x00, 0x00 };

MessageData[6] = LineData[0];

MessageData[7] = LineDatal[l]; //Bytes 6 & 7 contain the
section start address

SendCANmessage (MessageId, MessageData); //Send the previously
defined CAN message

while (!Wait for ID and Data((0x580 + AxisId), new byte[3] {
0x60, 0x64, 0x20 })) { } //wait for SDO confirmation

//The function Wait for ID and Data returns TRUE when it
receives a successful SDO reply from the drive:

//Id 0x580 + AxisNr. and Data 0x60 0xYY 0xXX; where 0xXXYY is
the object that was written.

console.WriteLine ("Writing data section starting from address
0x" + Convert.ToString(BitConverter.ToUIntl6(LineData, 0), 16)); //Displays the start
address of each .sw data segment

console.WriteLine("");
setAddress = false;
continue;

}

LineData = BitConverter.GetBytes (Intl6.Parse(strlLine,
System.Globalization.NumberStyles.HexNumber, null));

MessageData = new Byte[8] { 0x23, 0x65, 0x20, 0x00, 0x00, 0x00,
0x00, 0x00 };

MessageData[4] = LineDatal[0];

MessageData[5] = LineDatal[l]; //Bytes 4 & 5 contain the data from
the .sw file (to be written in the EEPROM of the drive)

SendCANmessage (MessageId, MessageData) ;

while (!Wait for ID and Data((0x580 + AxisId), new byte[3] { 0x60,
0x65, 0x20 })) {} //wait SDO confirmation

}
console.WriteLine("Writing file " + Path+ " ended");
sr.Close();

}

catch (FileNotFoundException e)

{

console.WriteLine (e.Message) ;

© Technosoft 2019 196 iPOS CANopen Programming

18.6 Checking and loading the drive setup via SW file using CANopen commands example.

Check the integrity of the setup data on a drive and update it if needed.

Before reading this example, please read paragraph 18.4.
To create a .sw file containing only the setup data do the following:

e In Easy Motion Studio, go to Application (in the menu bar at the top)-> Create EEPROM Programmer File ->
Setup Only... . Choose where to save the .sw file.

e In EasySetup, Setup (in the menu bar at the top) -> Create EEPROM Programmer File... . Choose where to
save the .sw file.

Let’s suppose that the setup data of a Technosoft drive is located at EEPROM addresses between 0x5E06 and Ox5EFF.
Here are the steps to be taken in order to check the setup data integrity and to re-program the drive if necessary:

1. Compute the checksum in the .sw file. Let’s suppose that the computed checksum is 0x1234.

2. Access object 2069 in order to compute the checksum of the setup table located on the drive. Write
the value OXSEFF5E06

Send the following message: SDO write to object 2069n sub-index 0, 32-bit value 5SEFF5EQ6h.

Following the reception of this message, the drive will compute the checksum of the EEPROM locations 0x5E06 to
Ox5EFF. The result is stored in the object 206An.

3. Read the computed checksum from object 206Ax.
Read by SDO protocol the value of object 206An.

Let us assume the drive returns the following message (Object 206An = 0x2345):

As the returned checksum (0x2345) does not match the checksum computed from the .sw file, the setup table has
to be configured from the .sw file.

4. Prepare the Read/Write Configuration Register for EEPROM write. Let us assume the address Ox5E06 is
the first 16 bit number found in the .sw file where setup data begins. Write the value Ox5E060009 into the object
2064n (write 32-bit data at EEPROM address Ox5E06 and auto-increment the address after the write
operation).

Send the following message: SDO write to object 2064 sub-index 0, 32-bit value 5SE060009h.

5. Write the sw file data 32 bits at a time. Supposing that the next 2 entries in the .sw file after the start address
O0x5E06 are Ox and 0x5678, you have to write the value 0x5678 into object 2065r.

Send the following message (SDO write to object 2065h sub-index 0, 32-bit value 56781234n):
The number 0x will be written at address Ox5E06 and 0x5678 will be at Ox5EQ7.

6. Assuming the next data after 0x5678 will be 0x09AB and OxCDEF, write the value OxCDEFQ9AB into object
2065h.

Send the following message (SDO write to object 2065n sub-index 0, 32-bit value CDEF09ABH):
The number 0x09AB will be written at address Ox5E08 and OxCDEF will be at 0Ox5E09.
7. Repeat step 5 until a blank line is found in the .sw file.

This means that all the setup data is written, even if there is more data after the blank line.

8. Re-check the checksum (repeat steps 2 and 3). If ok, go to step 9

© Technosoft 2019 197 iPOS CANopen Programming

9. Reset the drive in order to activate the new setup.

Send with the Cob ID 0x0 the data 0x81 0x0A. Where 0xOA means Axis ID 10.

When object 2064 bit 7=0 (auto-incrementing is ON), do not read the object
list in parallel with a read/write operation using a script. By reading object
2066n in parallel with another application, the target memory address will be
incremented and will lead to incorrect data writing or reading.

Warning!

18.7 SW file Checksum calculation C# example code

The code presented below is written in C# language and its structure can be used as an example for other programming
languages.

The program itself works as standalone. Just create a new console script in Visual Studio C# 2005 or newer and copy
it directly.

This example is made in the same way as the example from 18.5 Downloading an image file (.sw) to the drive using
CANopen objects C# example code and can be easily merged. In this way, a script will download a .sw file and at the
same time calculate the checksum for each section in order to verify it later with object 2069, and 206An.

As described in chapter 18.2, the SW file has up to 4 data sections. This script will Display the Start, End address and
Checksum of each section. These three parameters can later be used with objects 2069, and 206An to verify the
checksum on the drive after the SW file is downloaded. Later, to verify the data integrity, at each drive start-up, the
checksum can be verified to ensure the correct setup data is present on the drive.

18.7.1 The checksum calculation code

using System;

using System.Collections.Generic;
using System. Text;

using System.IO;

using System.Threading;

using System.Collections;

using System.Runtime;

using System.Diagnostics;

namespace THS checksum calculator
{
static class Program
{
static void Main(string[] args)
{
String Path = "c:\\setupl.sw"; //define the SW file path
CalculateSWfileChecksum (Path) ;
}
private static void CalculateSWfileChecksum(String Path)
{

System.Console.WriteLine("");

System.Console.WriteLine ("Reading SW file from path : " + Path);
System.Console.WriteLine ("");

try

{
StreamReader sr = File.OpenText (Path) ;
String strLine;

bool setAddress = true; //because the first line in the SW is an
address, start with setAddress TRUE.

UIntl6 checksumSW = 0;
UIntl6 StartAddress = 0;

© Technosoft 2019 198 iPOS CANopen Programming

UIntl16 EndAddress 0;
Byte[] LineData;

int swFileSection = 1;

while (null != (strLine = sr.ReadLine()))
{
if (strlLine == "") //checks for blank spaces with no data
{
System.Console.WriteLine ("End address = 0x" +
EndAddress. ToString ("X") + "; High 16bit of object 2069,"); //Display in HEX the

current section End address

System.Console.WriteLine ("Checksum = 0x" +
(checksumSW) . ToString ("X") + "; To be compared with object 20624, value."); //Display in
HEX the current section Checksum value

System.Console.WriteLine ("");
checksumSW = 0;

setAddress = true;

continue;

}
if (setAddress)
{
LineData = BitConverter.GetBytes(Intl6.Parse(strLine,
System.Globalization.NumberStyles.HexNumber, null));
StartAddress = BitConverter.ToUIntlé6 (LineData, 0);
EndAddress = StartAddress;
EndAddress--;
System.Console.WriteLine ("SW file Section " + swFileSection +
" parameters:"); //Display the SW file section
System.Console.WriteLine ("Start address = 0x" +
StartAddress.ToString ("X") + "; Low 1l6bit of object 2069,"); //Display in HEX the
current section Start address
swFileSection++; //increment the file section number
setAddress = false;
continue;
}
EndAddress++;

LineData = BitConverter.GetBytes(Intl6.Parse(strLine,
System.Globalization.NumberStyles.HexNumber, null));

checksumSW += BitConverter.ToUIntlé6 (LineData, 0) ;
}
System.Console.WriteLine ("Ended reading file " + Path);
sr.Close();

Thread.Sleep(5000); //Wait and display results in Debug window before
it closes

}
catch (FileNotFoundException e)

{

System.Console.WriteLine (e.Message);

The output window of the program should look like this:

© Technosoft 2019 199 iPOS CANopen Programming

19 Advanced features

Due to its embedded motion controller, a Technosoft intelligent drive offers many programming solutions that may
simplify a lot the task of a CANopen master. This paragraph overviews a set of advanced programming features that
can be used when combining TML programming at drive level with CANopen master control. All features presented
below require usage of EasyMotion Studio as TML programming tool.

Remark: If you do not use the advanced features presented below you do not need EasyMotion Studio.

19.1 Using EasyMotion Studio

19.1.1 Starting a new project

Before starting a new project, establish serial communication with the drive. To do this, first read Paragraph 1.1.3. The
same method for establishing communication applies to EasyMotion Studio as for EasySetup.

Press New button . A new window will appear.

Step 1, selects the axis number for your drive. By default the drive is delivered with axis number 255.

In Step 2, a setup is defined. The setup data can be opened from a previous save, uploaded from the drive, or select a
new one for a new drive.

19.1.2 Choosing the drive, motor and feedback configuration

Press New button and select your drive category: iPOS Drives (all drives from the new iPOS line), Plug In
Drives (all plug-in drives, except iPOS line), Open Frame Drives, (all open-frame drives except iPOS line), Closed Frame
Drives (all close-frame drives except iPOS line), etc. If you do not know your drive category, you can find it on Technosoft
web page.

Continue the selection tree with the motor technology: rotary or linear brushless, brushed, 2 or 3 phase stepper, the

control mode in case of steppers (open-loop or closed-loop) and type of feedback device, if any (for example: none or
incremental encoder).

© Technosoft 2019 200 iPOS CANopen Programming

Figure 19.1.1. EasyMotion Studio — Selecting the drive, motor and feedback

New windows are loaded which show the project information and current axis number for the selected application. In
the background, other customizable windows appear. These are control panels that show and control the drive status

through the serial communication interface.
In the left tree, click S Setup item.

Figure 19.1.2. EasyMotion Studio — Project information

To edit the setup, click View / Modify button.

Figure 19.1.3. EasyMotion Studio — Editing drive setup

© Technosoft 2019 201 iPOS CANopen Programming

The selection opens 2 setup dialogues: for Motor Setup and for Drive setup through which you can introduce your
motor data and commission the drive, plus several predefined control panels customized for the drive selected.

For introducing motor data and configuring the drive parameters, please read Paragraph 1.1.5 and 1.1.6.

19.1.3 Downloading setup data to drive/motor

Closing the Drive setup dialogue with OK, keeps the new settings only in the EasyMotion Studio project. In order to

Download tof

store the new settings into the drive you need to press the Download to Drive/Motor button [Pietatar] or the @ button
on the menu toolbar. This downloads the entire setup data in the drive EEPROM memory. The new settings become
effective after the next power-on, when the setup data is copied into the active RAM memory used at runtime.

19.2 Using TML Functions to Split Motion between Master and Drives

With Technosoft intelligent drives you can really distribute the intelligence between a CANopen master and the drives
in complex multi-axis applications. Instead of trying to command each step of an axis movement, you can program the
drives using TML to execute complex tasks and inform the master when these are done. Thus for each axis, the master
task may be reduced at: calling TML functions (with possibility to abort their execution) stored in the drives EEPROM
and waiting for a message, which confirms the finalization of the TML functions execution.

19.2.1 Build TML functions within EasyMotion Studio

The following steps describes how to create TML functions with EasyMotion Studio

1. Define the TML functions. Open the EasyMotion Studio project and select the Functions entry from the project
tree. On the right side of the project panel add the TML functions executed by the drive. You may also remove, rename
and change the functions download order.

Remark: You can call up to 10 TML functions using the CANopen objects.

2. Add the TML code. The added functions are listed in the project tree under the Functions entry. Select each
function from the list and add the TML code that will be executed by the function.
3. Download the TML functions into the drive memory. Use the menu command Application | Motion | Build

to create the executable code and the menu command Application | Motion | Download Program to download the
TML code into the drive memory.

[:E. Project EI@
AN -0 DF QT T [t [1 [2] 18 2 % T Bymsc| g |6 &
= & Untitled Function Function1 2

=] Untitled Application ifPosition profile
S Setup CACC = 0.0318;//acceleration rate = 100[rad/s"2]
h CSPD = 3.333 w speed = 100[rpm]
El M Motion CPOS = 6000L://position command = 3{rot]
[{ Homing Modes CPR; /iposition command is relative
= &l Functions MMODE PF;
— . ; iset Target Update Mode 1 X
'T;j Functionl j .
= ecute immediate
'Eﬂ Function2 ; I wait for completion Tl}
=) Function3
31 Interrupts
[CAM Tables
)
»a

=3

Figure 19.2.1. EasyMotion Studio project window — functions edit view

19.2.2 TML Function Objects

19.2.2.1 Object 2006nx: Call TML Function

The object allows the execution of a previously downloaded TML function. When a write is performed to this object, the
TML function with the index specified in the value provided is called. The TML function body is defined using EasyMotion
Studio and saved in the EEPROM memory of the drive. The function index represents an offset in a predefined table of
TML callable functions.

© Technosoft 2019 202 iPOS CANopen Programming

It is not possible to call another TML function, while the previous one is still running. Bit 8 of Statusword (604 1) shows
if a function is running. In case a function was called while another was still running, bits 7 (warning) from the Statusword
(60411) and 14 (command error) from Motion Error Register (2000n) are set, and the function call is ignored. The
execution of any called TML function can be aborted by setting bit 13 in Controlword.

There are 10 TML functions that can be called through this mechanism (the first 10 TML functions defined using the
EasyMotion Studio advanced programming environment). Any attempt to call another function (writing a number
different from 1...10 in this object) will be signaled with an SDO abort code 0609 0030n (Value range of parameter
exceeded). If a valid value is entered and no TML function is defined in that position, an SDO abort code will be issued:
0800 0020n (Data cannot be transferred or stored to the application).

The functions are initialized and available for calling, only after Controlword receives the Shutdown command (6040 =
06).

Object description:

Index 2006n

Name Call TML function

Object code VAR

Data type UNSIGNED16
Entry description:

Access L6

PDO mapping No

Units -

Value range 1...10

Default value -

19.3 Executing TML programs

The distributed control concept can go on step further. You may prepare and download into a drive a complete TML
program including functions, homing procedures, etc. The TML program execution can be started simply by writing a
value in the dedicated object.

19.3.1 Object 2077h: Execute TML program

This object is used in order to execute the TML program from either EEPROM or RAM memory. The TML program is
downloaded using the EasyMotion Studio software or by the CANopen master using the .sw file created in EasyMotion
Studio.

Writing any value in this object (through the SDO protocol) will trigger the execution of the TML program in the drive. If
no TML program is found on the drive, an SDO abort code will be issued: 0800 0020 (Data cannot be transferred or
stored to the application).

Object description:

Index 2077
Name Execute TML program
Object code VAR
Data type UNSIGNED16
Entry description:
Access WO
PDO mapping No
Value range UNSIGNED16
Default value -

19.4 Loading Automatically Cam Tables Defined in EasyMotion Studio

Apart from CiA402 standard operation modes, Technosoft iPOS drives include others like: electronic gearing, electronic
camming, external modes with analogue or digital reference etc. When electronic camming is used, the cam tables can
be loaded in the following ways:

The master downloads the cam points into the drive active RAM memory after each power on;
The cam points are stored in the drive EEPROM and the master commands their copy into the active RAM memory
The cam points are stored in the drive EEPROM and during the drive initialization (transition to Ready to switch on
status) are automatically copied from EEPROM to the active RAM

For the last 2 options, the cam table(s) are defined in EasyMotion Studio and are included in the information stored in
the EEPROM together with the setup data and the TML programs/functions.

Remark: The cam tables are included in the .sw file generated with EasyMotion Studio. Therefore, the master can
check the cam presence in the drive EEPROM using the same procedure as for testing of the setup data.

© Technosoft 2019 203 iPOS CANopen Programming

19.4.1 CAM table structure

The cam tables are arrays of X, Y points, where X is the cam input i.e. the master position and Y is the cam output i.e.
the slave position. The X points are expressed in the master internal position units, while the Y points are expressed in
the slave internal position units. Both X and Y points 32-bit long integer values. The X points must be positive (including
0) and equally spaced at: 1, 2, 4, 8, 16, 32, 64 or 128 i.e. having the interpolation step a power of 2 between 0 and 7.
The maximum number of points for one cam table is 8192.

As cam table X points are equally spaced, they are completely defined by two data: the Master start value or the first
X point and the Interpolation step providing the distance between the X points. This offers the possibility to minimize
the cam size, which is saved in the drive/motor in the following format:

1st word (1 word = 16-bit data):

Bits 15-13 — the power of 2 of the interpolation step. For example, if these bits have the binary value 010 (2), the
interpolation step is 22 = 4, hence the master X values are spaced from 4 to 4: 0, 4, 8, 12, etc.

Bits 12-0 — the length -1 of the table. The length represents the number of points (one point occupies 2 words)

2nd and 3rd words: the Master start value (long), expressed in master position units. 2" word contains the low part,
3rd word the high part

4th and 5th words: Reserved. Must be set to 0

Next pairs of 2 words: the slave Y positions (long), expressed in position units. The 1st word from the pair contains the
low part and the 2nd word from the pair the high part

Last word: the cam table checksum, representing the sum modulo 65536 of all the cam table data except the checksum
word itself.

19.5 Customizing the Homing Procedures

The homing methods defined by the CiA402 are highly modifiable to accommodate your application. If needed, any of
these homing modes can be customized. In order to do this you need to select the Homing Modes from your EasyMotion
Studio application and in the right side to set as “User defined” one of the Homing procedures. Following this operation
the selected procedure will occur under Homing Modes in a sub tree, with the name HomeX where X is the number of
the selected homing.

[Project [F=5ECR =
£l 5 Untitled Homing Modes -
= Untitled Application home1 - Homing on the negative limit witch and index pulse. Move (® Default
. - L - Reload default
S Setup negative until the negative limit switch is reached. Reverse and stop at O User defined
= M Motion hun'!e.z - Hu!Tung on t!1.e pu.sr.trve |I.ITII‘t ;wrtch and index pulse. Move (® Default Reload defautt =
= positive until the positive limit switch is reached. Reverse and stop at the | (T User defined
= [Homing Modes .. - - - o
home3 - Homing on the positive home switch and index pulse. Initial (] Default Reload default
% homed movement is negative if the home switch is high. Otherwise, initial () User defined Sioac eetay
% homell home4 - Homing on the positive home switch and index pulse. Initial (CDefault Reload defautt
'Ej homeld movement is positive if the home switch is low. Otherwise, initial (@ User defined €load detau
@ Functions homes - Homing on the negative home switch and index pulse. Initial @ Default Reload default
&] Interrupts movement is positive if the home switch is high. Otherwise, initial ClUser defined Fload defau
[&1 CAM Tables homes - Homing on the negative home switch and index pulse. Initial (®] Default Reload default
movement iz negative if the home switch iz low. Otherwise, initial (CUser defined Eload cetau

home7 - Homing on the home switch and index pulse. Initial movement is | (8 Default

Reload default

positive if the home switch is low, otherwise is negative. If moving (Tl User defined
home8 - Homing on the home switch and index pulse. Initial movement is @ Default Reload defauk
positive if the home switch iz low, otherwise is negative. If moving (" User defined ¢load defau

homed - Homing on the home switch and index pulse. Initial movement i : (@ Default

dd
positive. Reverse either after the home switch high-low transition or it (™ Uzer defined Reload default

home10 - Homing on the home switch and index pulse. Inttial movement is @ Default
positive. Reverse if the poesitive limit switch is reached, then reverse ClUser defined

home11 - Homing on the home switch and index pulse. Initial movement iz | () Default Dalnad dafant -

Reload default

If you click on the HomeX procedure, on the right side you'll see the TML function implementing it. The homing routine
can be customized according to your application needs. Its calling name and method remain unchanged.

19.6 Customizing the Drive Reaction to Fault Conditions

Similarly to the homing modes, the default service routines for the TML interrupts can be customized according to your
application needs. However, as most of these routines handle the drive reaction to fault conditions, it is mandatory to
keep the existent functionality while adding your application needs, in order to preserve the correct protection level of
the drive. The procedure for modifying the TML interrupts is similar with that for the homing modes.

© Technosoft 2019 204 iPOS CANopen Programming

Appendix A: Object Dictionary by Index

Index Sl Description
index
1000n 00n Device type
1001n 00n Error register
10025 00n Manufacturer status register
Predefined error field
00n Number of errors in history
01n Standard error field (history 1)
1003n 02n Standard error field (history 2)
03n Standard error field (history 3)
04n Standard error field (history 4)
05n Standard error field (history 5)
1005n 00n COB-ID of the SYNC message
1006n 00n Communication cycle period
1008n 00n Manufacturer device name
100An 00n Manufacturer software version
100Ch 00n Guard time
100Dn 00n Lifetime factor
Store parameters
1010n 00n Number of entries
01n Save all parameters
Restore default parameters
1011n 00n Number of entries
01n Restore all default parameters
1013n 00n High resolution time stamp
1014n 00n COB-ID Emergency object
1017n 00n Producer heartbeat time
Identity Object
00n Number of entries
01n Vendor ID
ol 02n Product Code
03n Revision Number
04n Serial Number
Server SDO parameter
12004 00n Number of'entries
01n COB-ID Client -> Server (rx)
02n COB-ID Client -> Server (tx)
Receive PDO1 communication parameters
14004, 00n Number of entries
01n COB-ID RPDO1
02n Transmission type
Receive PDO2 communication parameters
1401, 00n Number of entries
01n COB-ID RPDO2
02n Transmission type
Receive PDO3 communication parameters
1402;, 00n Number of entries
01n COB-ID RPDO3
02n Transmission type
Receive PDO4 communication parameters
1403, 00n Number of entries
01n COB-ID RPDO4
02n Transmission type
RPDO1 mapping parameters
1600n 00n Number of entries
01n 15t mapped object — 6040n — Controlword
RPDO2 mapping parameters
1601, 00n Number of ent_ries
01n 15 mapped object — 6040n — Controlword
02n 2" mapped object — 6060n — modes of operation
RPDO3 mapping parameters
1602: 00n Number of entries
01n 15t mapped object — 6040n — Controlword
02n 2"Y mapped object — 607An — target position
1603n RPDO4 mapping parameters

© Technosoft 2019

205

iPOS CANopen Programming

00n Number of entries
01n 15t mapped object — 6040n — Controlword
02n 2" mapped object — 60FFn — target velocity
TPDO1 communication parameters
00n Number of entries
01n COB-ID TPDO1
1800n 02n Transmission type
03n Inhibit Time
04n Reserved
05n Event timer
TPDO2 communication parameters
00n Number of entries
01n COB-ID TPDO2
1801n 02n Transmission type
03n Inhibit Time
04n Reserved
05n Event timer
TPDO3 communication parameters
00n Number of entries
01n COB-ID TPDO3
1802; 02n Transmission type
03n Inhibit Time
04n Reserved
05n Event timer
TPDO4 communication parameters
00n Number of entries
01n COB-ID TPDO4
1803n 02n Transmission type
03n Inhibit Time
04n Reserved
05n Event timer
TPDO1 mapping parameters
1A00n 00n Number of entries
01n 15t mapped object — 6041» — Statusword
TPDO2 mapping parameters
1A01, 00n Number of entries
01n 18t mapped object — 60411 — Statusword
02n 2"Y mapped object — 6061n — modes of operation display
TPDO3 mapping parameters
1A02, 00n Number of ent_ries
01n 18t mapped object — 60411 — Statusword
02n 2" mapped object — 6064 — position actual value
TPDO4 mapping parameters
1A03, 00n Number of entries .
01n 15 mapped object — 606Bh — velocity demand value
02n 2" mapped object — 606Ch — velocity actual value
2000n 00n Motion Error Register
2002n 00n Detailed Error Register
2003n 00n Communication Error Register
2004+ 00n COB-ID High resolution time stamp
2005n 00n Max slippage time out
2006n 00n Call TML function
2009 00n Detailed Error Register 2
2010n 00n Master settings
2012, 00n Master resolution
EGEAR multiplication factor
20135 00n Number of _entries
01n EGEAR ratio numerator (slave)
02n EGEAR ratio denominator (master)
2017n 00n Master actual position
2018n 00n Master actual speed
2019n 00n CAM table load address
201An 00n CAM table run address
201Bn 00n CAM offset
201Ch 00n External on-line reference
201Dn 00n External reference type
2022y 00n Control effort
2023h 00n Jerk time

© Technosoft 2019 206 iPOS CANopen Programming

2025h 00n Stepper current in open loop operation
2026n 00n Stand-by current for stepper in open loop operation
2027n 00n Timeout for stepper stand-by current
2045h 00n Digital outputs status
2046n 00n Analogue input: Reference
2047n 00n Analogue input: Feedback
2050n 00n Over current protection level
2051n 00n Over current time out
2052, 00n Motor nominal current
2053n 00n 12t protection integrator limit
2054n 00n 12t protection scaling factor
2055h 00n DC-link voltage
2058h 00n Drive temperature
2060n 00n Software version of the TML application
2064n 00n Read/Write configuration register
2065h 00n Write data at address set in object 2064h (16/32 bits)
2066n 00n Read data from address set in object 2064 (16/32 bits)
2067n 00n Write data at specified address
2069n 00n Checksum configuration register
206An 00n Checksum read register
206Bn 00n CAM input scaling factor
206Ch 00n CAM output scaling factor
206Fn 00n Time notation index
2070n 00n Time dimension index
Time factor
00n Number of entries
2071 01n Numerator
02n Divisor
2072n 00n Interpolated position mode status
2073n 00n Interpolated position buffer length
2074n 00n Interpolated position buffer configuration
Position triggers
00n Number of entries
01n Position trigger 1
2075 02n Position trigger 2
03n Position trigger 3
04n Position trigger 4
2076n 00n Save current configuration
2077n 00n Execute TML program
2079n 00n Interpolated position initial position
207An 00n Interpolated position 15 order time
207Bn 00n Homing current threshold
207Chn 00n Homing current threshold time
207Dn 00n Dummy
207En 00n Current actual value
207Fn 00n Current limit
2081n 00n Set/Change the actual motor position value
2083n 00n Encoder resolution for step loss protection
2084n 00n Stepper resolution for step loss protection
2085h 00n Position triggered outputs
2086n 00n Limit speed for CSP
2087h 00n Actual internal velocity from sensor on motor
2088n 00n Actual internal position from sensor on motor
208Bn 00n Sin AD signal from Sin/Cos encoder
208Cnh 00n Cos AD signal from Sin/Cos encoder
208Dn 00n Auxiliary encoder position
208En 00n Auxiliary Settings Register
Digital inputs 8bit
00n Number of entries
2R 01n Device profile defined inputs
02n Manufacturer specific inputs
Digital outputs 8bit
00n Number of entries
2090n 01n Physical outputs 8bit
02n Bit mask 8bit
2091n 00n Lock EEPROM
2092; User Variables
00n Number of entries

© Technosoft 2019

207

iPOS CANopen Programming

01n UserVar1
02n UserVar2
03n UserVar3
04n UserVar4
2100n 00n Number of steps per revolution
2101n 00n Number of microsteps per step
2102n 00n Brake status
2103n 00n Number of encoder counts per revolution
2104n 00n Auxiliary encoder function
2105n 00n Auxiliary encoder status
2106n 00n Auxiliary encoder captured position positive edge
2107n 00n Auxiliary encoder captured position negative edge
210Bn 00n Auxiliary Settings Register2
Filter variable 16bit
00n Number of entries
2108h 01n 16 bit variable address
02n Filter strength
03n Filtered variable 16bit
6007h 00n Abort connection option code
6040n 00n Controlword
6041n 00n Statusword
605An 00n Quick stop option code
605Bh 00n Shutdown option code
605Ch 00n Shutdown option code
605Dn 00n Disable operation option code
605En 00n Fault reaction option code
6060n 00n Modes of operation
6061n 00n Modes of operation display
6062n 00n Position demand value
6063n 00n Position actual internal value
6064h 00n Position actual value
6065nh 00n Following error window
6066n 00n Following error time out
6067h 00n Position window
6068h 00n Position window time
6069 00n Velocity sensor actual value
606Bn 00n Velocity demand value
606Ch 00n Velocity actual value
606Fnh 00n Velocity threshold
607An 00n Target position
Position range limit
00n Number of entries
Ao 01n Min position range limit
02n Max position range limit
607Ch 00n Home offset
Software position limit
00n Number of entries
607Dn 01n Minimum position range limit
02n Maximum position range limit
607En 00n Polarity
6081n 00n Profile velocity
6083h 00n Profile acceleration
6085h 00n Quick stop deceleration
6086n 00n Motion profile type
6089n 00n Position notation index
608An 00n Position dimension index
608Bh 00n Velocity notation index
608Ch 00n Velocity dimension index
608Dn 00n Acceleration notation index
608En 00n Acceleration dimension index
Position factor
00n Number of entries
kL 01n Numerator
02n Divisor
Velocity encoder factor
00n Number of entries
6094 01n Numerator
02n Divisor
© Technosoft 2019 208 iPOS CANopen Programming

Acceleration factor
00n Number of entries
el 01n Numerator
02n Divisor
6098h 00n Homing method
Homing speeds
6099, 00n Number of entries -
01n Speed during search for switch
02n Speed during search for zero
609An 00n Homing acceleration
60B8h 00n Touch probe function
60B9n 00n Touch probe status
60BAh 00n Touch probe 1 positive edge
60BBh 00n Touch probe 1 negative edge
60BCh 00n Touch probe 2 positive edge
60BDn 00n Touch probe 2 negative edge
60COn 00n Interpolation sub mode select
Interpolation Data Record
00n Number of entries
60C1n 01n The first parameter
02n The second parameter
Interpolation Time Period
00n Number of entries
60C2: 01n Interpolation time period value
02n Interpolation time index
60F2; 00n Positioning Option Code
60F4n 00n Following error actual value
60F8n 00n Max slippage
60FCn 00n Position demand internal value
60FDn 00n Digital inputs
60FEn Digital outputs
00n Number of entries
01n Physical outputs
02n Bit mask
60FFh 00n Target velocity
6502h 00n Supported drive modes

© Technosoft 2019

209

iPOS CANopen Programming

Appendix B: Definition of Dimension Indices

Dimension/Notation Index Table

physical dimension | units notation
dimension index exponent unit type index

non 0 units 0
length 1 metre 0
milli metre -3
kilo metre 3
micro metre -6
area 2 square metre 0
square metre -6

milli
square metre 6

kilo
volume 3 cubic metre 0
time 4 second 0
minute 70
hour 74
day 77
milli second -3
micro second -6
actual power 9 watt 0
kilo watt 3
mega watt 6
milli watt -3
apparent 10 voltampere 0
power kilo voltampere 3
mega voltampere 6
no. of 11 per second 0
revolutions per minute 73
per hour 74
angle 12 radian 0
second 75
minute 76
degree 77
newdegree 78
velocity 13 metre p. second 0
milli metre p. second -3
milli metre p. minute 79
metre p. minute 80
kilo metre p. minute 81
milli metre p. hour 82
metre p. hour 83
kilo metre p. hour 84
torque 16 newton metre 0
kilo newton metre 3
mega newton metre 6
temperature 17 kelvin 0
centigrade 94
Fahrenheit 95
voltage 21 Volt 0
kilo Volt 3
milli Volt -3
micro Volt -6
current 22 Ampere 0
kilo Ampere 3
milli Ampere -3
micro Ampere -6
ratio 24 percent 0
frequency 28 Hertz 0
kilo Hertz 3
mega Hertz 6
giga Hertz 9
steps 32 steps 0

© Technosoft 2019 210 iPOS CANopen Programming

encoder 33 revolution steps per 0
resolution

Examples for Notation Indices
Examples for notation indices < 64:

For notation index <64 the value is used as an exponent. The unit is defined by the physical dimension and calculated
by unit type and exponent, all declared in the dimension/notation index table above.

position unit dimension index = 1: length
notation index = -6: micro meter
position_units = q(Qnotation_index y f(dimension_index) = 10 m
dimension index = 12: angle notation index
=0: radian
position_units = qQnotation_index y f(dimension_index) = radian

velocity unit
dimension index = 13: velocity notation index = -3: milli metre

per second
velocity _units = qQnotation_index y f(dimension_index) = 103 m/s
frequency units dimension index = 28:

frequency notation index = 3: kilo hertz
frequency_units = qQretation_index y f(dimension_index) = 10° Hz

Examples for notation indices > 64:

The unit is defined by the physical dimension and unit type, both declared in the dimension/notation index table.
time units

dimension index = 4: time notation index = 77: day

time_units = f(dimension_index,notation_index) = day

position unit dimension index = 12:

angle notation index =76:
minute

position_units = f(dimension_index,notation_index)
= minute

TECHNOSOFT

© Technosoft 2019 211 iPOS CANopen Programming

	Table of contents
	Read This First
	About This Manual
	Scope of This Manual
	Notational Conventions
	Related Documentation
	If you Need Assistance …

	1 Getting Started
	1.1 Setting up the drive using EasySetup or EasyMotion Studio
	1.1.1 What are EasySetup and EasyMotion Studio?
	1.1.2 Installing EasySetup or EasyMotion Studio
	1.1.3 Establishing serial communication with the drive
	1.1.4 Choosing the drive, motor and feedback configuration
	1.1.5 Introducing motor data
	1.1.6 Commissioning the drive; configuring motor tuning and protections
	1.1.7 Downloading setup data to drive/motor
	1.1.8 Saving setup data in a file
	1.1.9 Creating a .sw file with the setup data
	1.1.10 Checking and updating setup data via .sw files with a CANopen master
	1.1.11 Testing and monitoring the drive behavior
	1.1.12 TechnoCAN Extension

	1.2 Changing the drive Axis ID (Node ID)
	1.3 Setting the current limit
	1.4 Setting the CAN baud rate
	1.5 CANopen factor group setting
	1.6 Using the built-in Motion Controller and TML
	1.6.1 Technosoft Motion Language Overview

	2 Layer Setting Services (LSS protocol)
	2.1 Overview
	2.2 Configuration services
	2.2.1 Switch State Global
	2.2.2 Switch State Selective
	2.2.3 Configure Node ID
	2.2.4 Configure Bit Timing Parameters
	2.2.5 Activate Bit Timing Parameters
	2.2.6 Store Configuration Protocol
	2.2.7 Inquire Identity Vendor ID
	2.2.8 Inquire Identity Product Code
	2.2.9 Inquire Identity Revision Number
	2.2.10 Inquire Identity Serial Number
	2.2.11 Inquire Identity Node ID
	2.2.12 Identify Remote Slave
	2.2.13 Identify non-configured Remote Slave

	3 CAN and the CANopen protocol
	3.1 CAN Architecture
	3.2 Accessing CANopen devices
	3.2.1 Object dictionary
	3.2.2 Object access using index and sub-index
	3.2.3 Service Data Objects (SDO)
	3.2.4 Process Data Objects (PDO)

	3.3 Objects that define SDOs and PDOs
	3.3.1 Object 1200h: Server SDO Parameter
	3.3.2 Object 1400h: Receive PDO1 Communication Parameters
	3.3.3 Object 1401h: Receive PDO2 Communication parameters
	3.3.4 Object 1402h: Receive PDO3 Communication parameters
	3.3.5 Object 1403h: Receive PDO4 Communication parameters
	3.3.6 Object 1600h: Receive PDO1 Mapping Parameters
	3.3.7 Object 1601h: Receive PDO2 Mapping Parameters
	3.3.8 Object 1602h: Receive PDO3 Mapping Parameters
	3.3.9 Object 1603h: Receive PDO4 Mapping Parameters
	3.3.10 Object 1800h: Transmit PDO1 Communication parameters
	3.3.11 Object 1801h: Transmit PDO2 Communication parameters
	3.3.12 Object 1802h: Transmit PDO3 Communication parameters
	3.3.13 Object 1803h: Transmit PDO4 Communication parameters
	3.3.14 Object 1A00h: Transmit PDO1 Mapping Parameters
	3.3.15 Object 1A01h: Transmit PDO2 Mapping Parameters
	3.3.16 Object 1A02h: Transmit PDO3 Mapping Parameters
	3.3.17 Object 1A03h: Transmit PDO4 Mapping Parameters
	3.3.18 Object 207Dh: Dummy

	3.4 Dynamic mapping of the PDOs
	3.5 RxPDOs mapping example
	3.6 TxPDOs mapping example

	4 Network Management
	4.1 Overview
	4.1.1 Network Management (NMT) State Machine
	4.1.2 Device control
	4.1.2.1 Enter Pre-Operational
	4.1.2.2 Reset communication
	4.1.2.3 Reset Node
	4.1.2.4 Start Remote Node
	4.1.2.5 Stop Remote Node

	4.1.3 Device monitoring
	4.1.3.1 Node guarding protocol
	4.1.3.2 Heartbeat protocol
	4.1.3.3 Boot-up protocol
	4.1.3.4 Synchronization between devices

	4.1.4 Emergency messages
	4.1.4.1 Emergency message structures

	4.2 Network management objects
	4.2.1 Object 1001h: Error Register
	4.2.2 Object 1003h: Pre-defined error field
	4.2.3 Object 1005h: COB-ID of the SYNC Message
	4.2.4 Object 1006h: Communication Cycle Period
	4.2.5 Object 1010h: Store parameters
	4.2.6 Object 1011h: Restore parameters
	4.2.7 Object 100Ch: Guard Time
	4.2.8 Object 100Dh: Life Time Factor
	4.2.9 Object 1013h: High Resolution Time Stamp
	4.2.10 Object 2004h: COB-ID of the High-resolution time stamp
	4.2.11 Configure the drive as a SYNC master Example
	4.2.12 Object 1014h: COB-ID Emergency Object
	4.2.13 Object 1017h: Producer Heartbeat Time

	5 Drive control and status
	5.1 CiA402 State machine and command coding
	5.2 Drive control and status objects
	5.2.1 Object 6040h: Controlword
	5.2.2 Object 6041h: Statusword
	5.2.3 Object 1002h: Manufacturer Status Register
	5.2.4 Object 6060h: Modes of Operation
	5.2.5 Object 6061h: Modes of Operation Display

	5.3 Limit Switch functionality explained
	5.3.1 Hardware limit switches LSP and LSN functionality
	5.3.2 Software limit switches functionality

	5.4 Error monitoring
	5.4.1 Object 2000h: Motion Error Register
	5.4.2 Object 2002h: Detailed Error Register (DER)
	5.4.3 Object 2009h: Detailed Error Register 2 (DER2)
	5.4.4 Object 2003h: Communication Error Register (CER)
	5.4.5 Object 605Ah: Quick stop option code
	5.4.6 Object 605Bh: Shutdown option code
	5.4.7 Object 605Ch: Disable operation option code
	5.4.8 Object 605Dh: Halt option code
	5.4.9 Object 605Eh: Fault reaction option code
	5.4.10 Object 6007h: Abort connection option code

	5.5 Digital I/O control and status objects
	5.5.1 Object 60FDh: Digital inputs
	5.5.2 Object 208Fh: Digital inputs 8bit
	5.5.3 Object 60FEh: Digital outputs
	5.5.3.1 Example for setting the digital outputs

	5.5.4 Object 2090h: Digital outputs 8bit
	5.5.5 Object 2045h: Digital outputs status
	5.5.6 Object 2102h: Brake status
	5.5.7 Object 2046h: Analogue input: Reference
	5.5.8 Object 2047h: Analogue input: Feedback
	5.5.9 Object 2055h: DC-link voltage
	5.5.10 Object 2058h: Drive Temperature
	5.5.11 Object 2108h: Filter variable 16bit

	5.6 Protections Setting Objects
	5.6.1 Object 607Dh: Software position limit
	5.6.2 Object 2050h: Over-current protection level
	5.6.3 Object 2051h: Over-current time out
	5.6.4 Object 2052h: Motor nominal current
	5.6.5 Object 2053h: I2t protection integrator limit
	5.6.6 Object 2054h: I2t protection scaling factor
	5.6.7 Object 207Fh: Current limit

	5.7 Step Loss Detection for Stepper Open Loop configuration
	5.7.1 Object 2083h: Encoder Resolution for step loss protection
	5.7.2 Object 2084h: Stepper Resolution for step loss protection
	5.7.3 Enabling step loss detection protection
	5.7.4 Step loss protection setup
	5.7.5 Recovering from step loss detection fault
	5.7.6 Remarks about Factor Group settings when using step the loss detection

	5.8 Drive info objects
	5.8.1 Object 1000h: Device Type
	5.8.2 Object 6502h: Supported drive modes
	5.8.3 Object 1008h: Manufacturer Device Name
	5.8.4 Object 100Ah: Manufacturer Software Version
	5.8.5 Object 2060h: Software version of a TML application
	5.8.6 Object 1018h: Identity Object

	5.9 Miscellaneous Objects
	5.9.1 Object 2025h: Stepper current in open-loop operation
	5.9.2 Object 2026h: Stand-by current for stepper in open-loop operation
	5.9.3 Object 2027h: Timeout for stepper stand-by current
	5.9.4 Object 2075h: Position triggers
	5.9.5 Object 2085h: Position triggered outputs
	5.9.6 Object 2076h: Save current configuration
	5.9.7 Object 208Bh : Sin AD signal from Sin/Cos encoder
	5.9.8 Object 208Ch : Cos AD signal from Sin/Cos encoder
	5.9.9 Object 208Eh: Auxiliary Settings Register
	5.9.10 Object 210Bh: Auxiliary Settings Register2
	5.9.11 Object 2100h: Number of steps per revolution
	5.9.12 Object 2101h: Number of microsteps per step
	5.9.13 Object 2103h: Number of encoder counts per revolution
	5.9.14 Object 2091h : Lock EEPROM
	5.9.15 Object 2092h: User Variables

	6 Factor group
	6.1 Factor group objects
	6.1.1 Object 607Eh: Polarity
	6.1.2 Object 6089h: Position notation index
	6.1.3 Object 608Ah: Position dimension index
	6.1.4 Object 608Bh: Velocity notation index
	6.1.5 Object 608Ch: Velocity dimension index
	6.1.6 Object 608Dh: Acceleration notation index
	6.1.7 Object 608Eh: Acceleration dimension index
	6.1.8 Object 206Fh: Time notation index
	6.1.9 Object 2070h: Time dimension index
	6.1.10 Object 6093h: Position factor
	6.1.10.1 Setting the numerator and divisor in a factor group object. Example

	6.1.11 Object 6094h: Velocity encoder factor
	6.1.12 Object 6097h: Acceleration factor
	6.1.13 Object 2071h: Time factor

	7 Homing Mode
	7.1 Overview
	7.2 Homing methods
	7.2.1 Method 1: Homing on the Negative Limit Switch and Index Pulse
	7.2.2 Method 2: Homing on the Positive Limit Switch and Index Pulse
	7.2.3 Methods 3 and 4: Homing on the Positive Home Switch and Index Pulse.
	7.2.4 Methods 5 and 6: Homing on the Negative Home Switch and Index Pulse.
	7.2.5 Methods 7 to14: Homing on the Home Switch using limit switches and Index Pulse.
	7.2.6 Methods 17 to 30: Homing without an Index Pulse
	7.2.7 Method 17: Homing on the Negative Limit Switch
	7.2.8 Method 18: Homing on the Positive Limit Switch
	7.2.9 Methods 19 and 20: Homing on the Positive Home Switch and Index Pulse.
	7.2.10 Methods 21 and 22: Homing on the Negative Home Switch
	7.2.11 Methods 23 to30: Homing on the Home Switch using limit switches
	7.2.12 Methods 33 and 34: Homing on the Index Pulse
	7.2.13 Method 35: Homing on the Current Position
	7.2.14 Method -1: Homing on the Negative Mechanical Limit and Index Pulse
	7.2.14.1 Method -1 based on motor current increase
	7.2.14.2 Method -1 based on step loss detection

	7.2.15 Method -2: Homing on the Positive Mechanical Limit and Index Pulse
	7.2.15.1 Method -2 based on motor current increase
	7.2.15.2 Method -2 based on step loss detection

	7.2.16 Method -3: Homing on the Negative Mechanical Limit without an Index Pulse.
	7.2.16.1 Method -3 based on motor current increase
	7.2.16.2 Method -3 based on step loss detection

	7.2.17 Method -4: Homing on the Positive Mechanical Limit without an Index Pulse.
	7.2.17.1 Method -4 based on motor current increase
	7.2.17.2 Method -4 based on step loss detection

	7.3 Homing Mode Objects
	7.3.1 Controlword in homing mode
	7.3.2 Statusword in homing mode
	7.3.3 Object 607Ch: Home offset
	7.3.4 Object 6098h: Homing method
	7.3.5 Object 6099h: Homing speeds
	7.3.6 Object 609Ah: Homing acceleration
	7.3.7 Object 207Bh: Homing current threshold
	7.3.8 Object 207Ch: Homing current threshold time

	7.4 Homing example

	8 Position Profile Mode
	8.1 Overview
	8.1.1 Discrete motion profile (change set immediately = 0)
	8.1.2 Continuous motion profile (change set immediately = 1)
	8.1.3 Controlword in profile position mode
	8.1.4 Statusword in profile position mode

	8.2 Position Profile Mode Objects
	8.2.1 Object 607Ah: Target position
	8.2.2 Object 6081h: Profile velocity
	8.2.3 Object 6083h: Profile acceleration
	8.2.4 Object 6085h: Quick stop deceleration
	8.2.5 Object 2023h: Jerk time
	8.2.6 Object 6086h: Motion profile type
	8.2.7 Object 6062h: Position demand value
	8.2.8 Object 6063h: Position actual internal value
	8.2.9 Object 6064h: Position actual value
	8.2.10 Object 6065h: Following error window
	8.2.11 Object 6066h: Following error time out
	8.2.12 Object 6067h: Position window
	8.2.13 Object 6068h: Position window time
	8.2.14 Object 607Bh: Position range limit
	8.2.15 Object 60F2h: Positioning option code
	8.2.16 Object 60F4h: Following error actual value
	8.2.17 Object 60FCh: Position demand internal value
	8.2.18 Object 2022h: Control effort
	8.2.19 Object 2081h: Set/Change the actual motor position
	8.2.20 Object 2088h : Actual internal position from sensor on motor
	8.2.21 Object 208Dh : Auxiliary encoder position

	8.3 Position Profile Examples
	8.3.1 Absolute trapezoidal example
	8.3.2 Absolute Jerk-limited ramp profile example

	9 Interpolated Position Mode
	9.1 Overview
	9.1.1 Internal States
	9.1.2 Controlword in interpolated position mode
	9.1.3 Statusword in interpolated position mode

	9.2 Interpolated Position Objects
	9.2.1 Object 60C0h: Interpolation sub mode select
	9.2.2 Object 60C1h: Interpolation data record
	9.2.2.1 a) For linear interpolation (standard DS402 implementation)
	9.2.2.2 b) For PT (Position –Time) linear interpolation (legacy).
	9.2.2.3 c) For PVT (Position – Velocity – Time) cubic interpolation

	9.2.3 Object 2072h: Interpolated position mode status
	9.2.4 Object 2073h: Interpolated position buffer length
	9.2.5 Object 2074h: Interpolated position buffer configuration
	9.2.6 Object 2079h: Interpolated position initial position
	9.2.7 Object 207Ah: Interpolated position 1st order time
	9.2.8 Loading the interpolated points

	9.3 Linear interpolation example
	9.4 PT absolute movement example
	9.5 PVT absolute movement example
	9.6 PVT relative movement example

	10 Cyclic Synchronous Position mode (CSP)
	10.1 Overview
	10.1.1 Controlword in Cyclic Synchronous Position mode (CSP)
	10.1.2 Statusword in Cyclic Synchronous Position mode (CSP)

	10.2 Cyclic Synchronous Position Mode Objects
	10.2.1 Object 60C2h: Interpolation time period
	10.2.2 Object 2086h: Limit speed for CSP

	10.3 Cyclic Synchronous Position Mode example
	10.4 Configuring Technosoft CANopen Drives for NC-PTP (CSP) operation in TwinCAT 3
	10.4.1 Create a new project and scan for the drives
	10.4.2 Setting the Sync-TxPDO Delay
	10.4.3 Adding new Nc-PTP axes
	10.4.4 NC-PTP Axis settings
	10.4.5 Setting the CAN communication cycle time
	10.4.6 Configuring the TwinCAT PDO layout
	10.4.6.1 Setting the PDOs as synchronous

	10.4.7 Adding start-up SDO drive configuration messages
	10.4.7.1 Mapping objects to RxPDO1
	10.4.7.2 Mapping objects to TxPDO1
	10.4.7.3 Setting Modes of Operation to CSP mode
	10.4.7.4 Setting the interpolation object
	10.4.7.5 Setting object 1006h to 0; Synchronization issue workaround

	10.4.8 Linking drive PDO data variables to internal NC-PTP variables
	10.4.8.1 Linking standard NC-PTP variables
	10.4.8.2 Linking the home input IN0 to the HomingSensor of the NC-PTP interface

	10.4.9 Enabling and testing the NC-PTP interface in TwinCAT
	10.4.10 Setting Controlword bit 14 to 1 (Optional)

	11 Velocity Profile Mode
	11.1 Overview
	11.1.1 Controlword in Profile Velocity mode
	11.1.2 Statusword in Profile Velocity mode

	11.2 Velocity Mode Objects
	11.2.1 Object 6069h: Velocity sensor actual value
	11.2.2 Object 606Bh: Velocity demand value
	11.2.3 Object 606Ch: Velocity actual value
	11.2.4 Object 606Fh: Velocity threshold
	11.2.5 Object 60FFh: Target velocity
	11.2.6 Object 60F8h: Max slippage
	11.2.7 Object 2005h: Max slippage time out
	11.2.8 Object 2087h : Actual internal velocity from sensor on motor

	11.3 Speed profile example

	12 Electronic Gearing Position (EGEAR) Mode
	12.1 Overview
	12.1.1 Controlword in electronic gearing position mode (slave axis)
	12.1.2 Statusword in electronic gearing position mode

	12.2 Gearing Position Mode Objects
	12.2.1 Object 2010h: Master settings
	12.2.2 Object 2012h: Master resolution
	12.2.3 Object 2013h: EGEAR multiplication factor
	12.2.4 Object 2017h: Master actual position
	12.2.5 Object 2018h: Master actual speed
	12.2.6 Object 201Dh: External Reference Type

	12.3 Electronic gearing through CAN example

	13 Electronic Camming Position (ECAM) Mode
	13.1 Overview
	13.1.1 Controlword in electronic camming position mode
	13.1.2 Statusword in electronic camming position mode

	13.2 Electronic Camming Position Mode Objects
	13.2.1 Object 2019h: CAM table load address
	13.2.2 Object 201Ah: CAM table run address
	13.2.3 Object 201Bh: CAM offset
	13.2.4 Object 206Bh: CAM: input scaling factor
	13.2.5 Object 206Ch: CAM: output scaling factor
	13.2.6 Building a CAM profile and saving it as an .sw file example
	13.2.6.1 Extracting the cam data from the motion and setup .sw file
	13.2.6.2 Downloading a CAM .sw file with objects 2064h and 2065h example

	13.3 Electronic camming through CAN example

	14 External Reference Position Mode
	14.1 Overview
	14.1.1 Controlword in external reference position mode
	14.1.2 Statusword in external reference position mode

	14.2 External Reference Position Mode Objects
	14.2.1 Object 201Ch: External On-line Position Reference

	14.3 External reference position profile example

	15 External Reference Speed Mode
	15.1 Overview
	15.1.1 Controlword in external reference speed mode
	15.1.2 Statusword in external reference speed mode

	15.2 External reference torque mode objects
	15.2.1 Object 201Ch: External On-line Speed Reference

	15.3 External reference speed profile example

	16 External Reference Torque Mode
	16.1 Overview
	16.1.1 Controlword in external reference torque mode
	16.1.2 Statusword in external reference torque mode

	16.2 External reference torque mode objects
	16.2.1 Object 201Ch: External On-line Torque Reference
	16.2.2 Object 6077h: Torque actual value
	16.2.3 Object 207Eh: Current actual value

	16.3 External reference torque profile example

	17 Touch probe functionality
	17.1 Overview
	17.2 Touch probe objects
	17.2.1 Object 60B8h: Touch probe function
	17.2.2 Object 60B9h: Touch probe status
	17.2.3 Object 60BAh: Touch probe 1 positive edge
	17.2.4 Object 60BBh: Touch probe 1 negative edge
	17.2.5 Object 60BCh: Touch probe 2 positive edge
	17.2.6 Object 60BDh: Touch probe 2 negative edge
	17.2.7 Object 2104h : Auxiliary encoder function
	17.2.8 Object 2105h : Auxiliary encoder status
	17.2.9 Object 2106h : Auxiliary encoder captured position positive edge
	17.2.10 Object 2107h : Auxiliary encoder captured position negative edge

	17.3 Touch probe example

	18 Data Exchange between CANopen master and drives
	18.1 Checking Setup Data Consistency
	18.2 Image Files Format and Creation
	18.3 Data Exchange Objects
	18.3.1 Object 2064h: Read/Write Configuration Register
	18.3.2 Object 2065h: Write 16/32 bits data at address set in Read/Write Configuration Register
	18.3.3 Object 2066h: Read 16/32 bits data from address set in Read/Write Configuration Register
	18.3.4 Object 2067h: Write data at specified address
	18.3.4.1 Writing 16 bit data to a specific address using object 2067h example

	18.3.5 Object 2069h: Checksum configuration register
	18.3.6 Object 206Ah: Checksum read register

	18.4 Downloading an image file (.sw) to the drive using CANopen objects example
	18.5 Downloading an image file (.sw) to the drive using CANopen objects C# example code
	18.5.1 The main script code
	18.5.2 The function Write_SWfile code

	18.6 Checking and loading the drive setup via SW file using CANopen commands example.
	18.7 SW file Checksum calculation C# example code
	18.7.1 The checksum calculation code

	19 Advanced features
	19.1 Using EasyMotion Studio
	19.1.1 Starting a new project
	19.1.2 Choosing the drive, motor and feedback configuration
	19.1.3 Downloading setup data to drive/motor

	19.2 Using TML Functions to Split Motion between Master and Drives
	19.2.1 Build TML functions within EasyMotion Studio
	19.2.2 TML Function Objects
	19.2.2.1 Object 2006h: Call TML Function

	19.3 Executing TML programs
	19.3.1 Object 2077h: Execute TML program

	19.4 Loading Automatically Cam Tables Defined in EasyMotion Studio
	19.4.1 CAM table structure

	19.5 Customizing the Homing Procedures
	19.6 Customizing the Drive Reaction to Fault Conditions

	Appendix A: Object Dictionary by Index
	Appendix B: Definition of Dimension Indices
	Dimension/Notation Index Table
	Examples for Notation Indices

