
Elmo Motion Control
CANopen DS 301

Implementation Guide

January 2005

http://www.elmomc.com/

Important Notice
This guide is delivered subject to the following conditions and restrictions:

 This guide contains proprietary information belonging to Elmo Motion Control Ltd.
Such information is supplied solely for the purpose of assisting users of SimplIQ
servo drives in implementing CANopen networking.

 The text and graphics included in this manual are for the purpose of illustration and
reference only. The specifications on which they are based are subject to change
without notice.

 Information in this document is subject to change without notice. Corporate and
individual names and data used in examples herein are fictitious unless otherwise
noted.

Doc. No. MAN-CAN301IG
Copyright © 2003, 2004, 2005

Elmo Motion Control Ltd.
All rights reserved.

Revision History

Ver. 1.7 January 2005 0xA6 error coded added, 0x2F21 bit 9 emergency even added,
 RPDO2 Structure Example 6 modified.

Ver. 1.6 December 2004 References to Harmonica changed to SimplIQ (MAN-CAN301IG)

• New objects: 0x2202 (Digital Input), 0x2F00 (user integer),
0x2F01 (user float array), 0x2F02 (ET Array)

• In objects 1800 to 1803 Sub Index 1 is Read Only
• New Protocol for the object 1018 sub index 3

Ver. 1.5 September 2003 Changes:
• Objects added to “Data Type”
• Enhanced PDO mapping in PDO and Object Dictionary sections, and

objects 0x1400-4, 0x1600-4, 0x1800-4 and 0x1A00-4
• PDO mapping defined in object 0x1600
• EDS storage objects removed from manual
• New objects: 0x2200 (digital input), 0x2F15 (profile position remaining

points), 0x2F40 (configuration object)
• DSP-402 objects transferred to DSP-402 manual
• Event time for TPDO defined in object 0x1800

Ver. 1.0 Jan. 2003 Initial Release (CANIGHA0103)

Elmo Motion Control Inc.
1 Park Drive, Suite 12
Westford, MA 01886
USA
Tel: +1 (978) 399-0034
Fax: +1 (978) 399-0035

Elmo Motion Control GmbH
Steinbeisstrasse 41
D-78056, Villingen-Schwenningen
Germany
Tel: +49 (07720) 8577-60
Fax: +49 (07720) 8577-70

www.elmomc.com

CANopen DS 301 Implementation Guide
MAN-CAN301IG (Ver. 1.7)

http://www.elmomc.com/

Contents

Chapter 1: Introduction ... 1
1.1 Relevant Documentation .. 1

1.1.1 Elmo Documentation... 1
1.1.2 CAN Documentation ... 2

1.2 Abbreviations and Terms.. 2
1.3 SimplIQ Communication ...3

Chapter 2: CANopen Basics.. 5
2.1 Physical Layer .. 5
2.2 Standard vs. Extended Addressing... 5
2.3 Client - Server Relations ... 5
2.4 Inhibit Times .. 6
2.5 RTR – Remote Transmission Request.. 6
2.6 Object Dictionary .. 6
2.7 Communication Objects ... 7
2.8 Object Dictionary - Data Types .. 8
2.9 Representation of Numbers..11

Chapter 3: The Object Dictionary...12

Chapter 4: Service Data Objects (SDOs)..17
4.1 Initiate SDO Download Protocol ...18
4.2 Download SDO Protocol ...19
4.3 Initiate SDO Upload Protocol ...20
4.4 Upload SDO Segment Protocol ...21
4.5 Abort SDO Transfer Protocol..22
4.6 Uploading Data Using an SDO ...23
4.7 Downloading Data Using an SDO ...24
4.8 Error Correction ...24

Chapter 5: Process Data Objects (PDOs) ...26
5.1 Receive PDOs ..26
5.2 Transmit PDOs ..28
5.3 PDO Mapping ...28

5.3.1 The Mapping Trigger – Transmission Type...28
5.3.2 The Synchronous Trigger ...29
5.3.3 The Asynchronous Trigger ..29
5.3.4 RPDO Error Handling ..30
5.3.5 Mapping Parameter Objects...30
5.3.6 Default Values ...31

Chapter 6: Emergency (EMCY)..34
6.1 Emergency Configuration ..34
6.2 Emergency Codes Related to Failure ...34
6.3 Emergency Codes for Motor Faults ...34
6.4 Emergency Codes Related to PVT/PT Motion...34

Chapter 7: Network Management (NMT)..36

Chapter 8: SYNC and Time Stamp ...37

CANopen DS 301 Implementation Guide
MAN-CAN301IG (Ver. 1.7)

i

Chapter 9: Binary Interpreter Commands ...38
9.1 Binary Interpreter Commands and Results ...39

9.1.1 Set and Query Commands ...39
9.1.1.1 RPDO2 Structure... 39
9.1.1.1 TPDO2 Structure ... 41

9.1.2 Execute Command ..42
9.2 ASCII Interpreter Commands not Supported by Binary Interpreter42

Chapter 10: The OS Interpreter ...43

Chapter 11: The EDS...45

Chapter 12: Communication Profile ...46
Object 0x1000: Device type... 46
Object 0x1001: Error register.. 47
Object 0x1002: Manufacturer status register.. 48
Object 0x1003: Pre-defined error field... 48
Object 0x1005: COB-ID SYNC message... 50
Object 0x1008: Manufacturer device name ... 51
Object 0x1009: Manufacturer hardware version ... 51
Object 0x100A: Manufacturer software version ... 52
Object 0x100B: Node ID ... 52
Object 0x1010: Save parameters ... 53
Object 0x1011: Restore parameters ... 54
Object 0x1012: COB-ID time stamp ... 55
Object 0x1013: High-resolution time stamp.. 56
Object 0x1014: COB-ID emergency object .. 56
Object 0x1016: Consumer heartbeat time.. 57
Object 0x1017: Producer heartbeat time.. 58
Object 0x1018: Identity object .. 59
Note: ... 60
Object 0x1023: OS command and prompt... 61
Object 0x1024: OS command mode... 62
Object 0x1029: Error behavior .. 63
Object 0x1200: SDO server parameter.. 64
Objects 0x1400 - 0x1403: Receive PDO communication parameter ... 65
Objects 0x1600 - 0x1603: Receive PDO mapping... 67
Objects 0x1800 - 0x1803: Transmit PDO communication parameter .. 68
Objects 0x1A00 - 0x1A03: Transmit PDO mapping.. 71

Chapter 13: Manufacturer-specific Objects...72
Object 0x2001: PVT data .. 73
Object 0x2002: PT data... 74
Object 0x2004: ECAM data .. 75
Object 0x2012: Binary interpreter input... 75
Object 0x2013: Binary interpreter output ... 76
Object 0x2030: Recorder data ... 76
Object 0x2040: Coordinate system group ID .. 82
Object 0x2041: Amplifier-free running timer ... 83
Object 0x2082: CAN controller status .. 83

CANopen DS 301 Implementation Guide Contents
MAN-CAN301IG (Ver. 1.7)

ii

Object 0x208A: Begin time ... 85
Object 0x2090: Firmware download.. 86
Object 0x20A0: Auxiliary position actual value ... 87
Object 0x20A1: Main position error ... 87
Object 0x2200: Digital input .. 88
Object 0x2201: Digital input low byte .. 89
Object 0x2F00: User Integer ... 90
Object 0x2F01: User Float Array .. 90
Object 0x2F02: ET Array... 91
Object 0x2F11: PVT head pointer ... 92
Object 0x2F12: PVT tail pointer ... 92
Object 0x2F15: Profile position remaining points ... 93
Object 0x2F20: PDO events.. 94
Object 0x2F21: Emergency events .. 96
Object 0x2F22: Bus off time out .. 100
Object 0x2F23: Digital input TPDO event parameters... 101
Object 0x2F30: Last time stamp correction ... 103
Object 0x2F31: Last SYNC time ... 103
Object 0x2F40: Configuration object... 104

Chapter 14: Error Control Protocol ...105

Chapter 15: Downloading Firmware ..106

Chapter 16: Initial CAN Communication Setup...107
16.1 Setup Using RS-232...107
16.2 Bootup Protocol ...108

Appendix: Little and Big Endians...106

CANopen DS 301 Implementation Guide Contents
MAN-CAN301IG (Ver. 1.7)

iii

Chapter 1: Introduction

This manual explains how to implement CANopen DS 301 communication with Elmo’s
SimplIQ DSP-based digital servo drives. It provides a description of SimplIQ drives and
the means of implementing communication based on the CiA CANopen protocols.

Most SimplIQ functionality is standard, according to CiA documents DS 301, version 4.01,
DSP 402 (proprietary) and the CiA OS interpreter. In this document, emphasis is placed
on manufacturer-specific behaviors, although it also repeats certain CiA standard
material, to enhance understanding and to complete certain descriptions. The manual
does not contain all relevant CiA information, indicating that many objects are
implemented, but are not documented herein. The user should therefore complement this
manual with the CiA documents outlined in the following section.

1.1 Relevant Documentation

1.1.1 Elmo Documentation

This manual is part of the Elmo SimplIQ documentation set, as outlined in the following
diagram:

Cello Installation Guide
Basssoon Installation Guide
Harmonica Installation Guide

Programming

Setup

Installation

Composer User Manual

CANopen Implementation Guide
SimplIQ Software Manual
SimplIQ Command Reference Manual

CANopen DS 301 Implementation Guide Introduction
MAN-CAN301IG (Ver. 1.7)

1

In addition to this document, the SimplIQ documentation set includes:
 The SimplIQ Installation Guide, which provides full instructions for installing the

SimplIQ digital servo drives

 The Composer User Manual, which includes explanations of all the software tools that
are a part of Elmo’s Composer software environment

 The SimplIQ Command Reference Manual, which describes, in detail, each software
command used to manipulate the SimplIQ motion controller.

 This is the main source of detailed explanations of all SimplIQ commands
mentioned in this manual.

The SimplIQ Software Manual, which describes the comprehensive software used with
SimplIQ digital servo drives

1.1.2 CAN Documentation

Document Name Author Source

CAN Implementation Guidelines Gruhler G. and Drier B. STA Reutlingen

CiA DS 301 V 4.01:
CANopen Communication Profile for
Industrial Systems - based on CAL

 CiA

CiA DS 302 V 3.0:
CANopen Framework for Programmable
Devices

 CiA

CiA DS 305 V 1.0:
CANopen Layer Setting Services and
Protocol (LSS)

 CiA

CiA DSP 402 V 2.0:
CANopen Device Profile

 CiA

CiA DS 202-2 V 1.1:
CAN Application Layer (CAL) -
CMS Protocol Specification

 CiA

1.2 Abbreviations and Terms

The following abbreviations are used in this manual:

CAL CAN application layer.

CMS CAN message specification.

COB Communication object; a CAN message.

ID Identifier; the name by which a CAN device is addressed.

COB-ID A binary bit-field that includes the ID of the server with which the
master talks, and the type of COB.

CANopen DS 301 Implementation Guide Introduction
MAN-CAN301IG (Ver. 1.7)

2

EDS Electronic data sheet; a standard form of all CAN objects supported
by a device. The EDS is used by external CAN configurators.

LSS Layer setting service: methods for configuring the ID and baud rate of
a slave, using the standard DSP 305.

OD Object dictionary, which is the full set of objects supported by the
node. It is the interface between the application and communication
(see “Object” below.)

PLC Programmable controller. A PLC can serve as a CAN master for
SimplIQ digital servo drives.

The following terms are used in this manual:

CAN client or A host — typically a PC — or other control equipment that supervises
CAN master the nodes of a network.

CAN server or A node in the CAN network that can give service under control of the
CAN slave CAN master.

LSB Least Significant Bit (or Byte)

MSB Most Significant Bit (or Byte)

Object A CAN message with a meaningful functionality and/or data. Objects
are referenced according to addresses in the object dictionary.

Receive In this manual, “received” data is sent from the control equipment to
the servo drive.

Transmit In this manual, “transmitted” data is sent from the servo drive to the
other equipment.

1.3 SimplIQ Communication

SimplIQ digital servo drives support two types of serial communication:

 RS-232

 CANopen

SimplIQ digital servo drives can simultaneously communicate using both CAN and RS-
232 communication lines, which are always open for communication. The communication
parameters are set using the PP command.

CANopen DS 301 Implementation Guide Introduction
MAN-CAN301IG (Ver. 1.7)

3

The following table compares the main features of both communication modes, as
implemented with Elmo SimplIQ digital servo drives:

Features CANopen RS-232

Baud rate 50,000 - 1,000,000. 4800 - 57,600 (RS-232).

Interpreter method Binary or ASCII. ASCII.

Fast referencing Yes, for PVT, PT and ECAM. No.

Network of servo drives Yes. No.

Multiple servo drive
synchronization

Yes. No.

Standardization Compliant with CiA
standard.

No standard.

Special equipment
required

CAN communication
interface (available as an
add-on ISA or PCMCIA card
for PCs) with appropriate
software.

No: direct connection to serial
port of PC.

Ease of use Basic capabilities included in
Elmo Composer program.

Immediate: Just type
command using
HyperTerminal or equivalent
terminal software.

Table 1-1: SimplIQ Communication Types

RS-232 operation is fast and simple, requiring no detailed understanding of communica-
tion processes. CANopen communication achieves higher rates and is able to support the
following advanced functions:

 High speed online reference generation, required for supporting complex motions

 Binary interpretation, which maximizes servo-drive command throughput by
eliminating servo drive software overhead

 Servo network applications

To benefit from CAN communication and the CiA DS 301 CANopen standard, the user
must have a good understanding of the basic programming and timing issues of a
CANopen network.

CANopen DS 301 Implementation Guide Introduction
MAN-CAN301IG (Ver. 1.7)

4

Chapter 2: CANopen Basics

This chapter describes — in general — the CANopen communication features most
relevant to Elmo SimplIQ servo drive. More detailed information is available in the
specific CANopen documentation.

2.1 Physical Layer

CAN is a serial communication standard in which the transferred data is coded as
electrical pulses on a two-wire communication line. The device that handles the CAN
physical layer is called the CAN controller. The device that transmits data over the CAN
lines is called the CAN transceiver. SimplIQ digital servo drives use a CAN controller built
into the drive DSP.

2.2 Standard vs. Extended Addressing

Each CAN message frame includes an arbitration field that defines the type of data sent
and its address. CAN version 2.0A supports 11 arbitration bits for this purpose; the seven
least significant define the address and the four most significant define the type of
message sent. Only 16 message types are supported. CAN version 2.0B supports 29
arbitration bits, of which the seven least significant define the address and 21 bits define
the message type. In CiA DS 301, the arbitration bits indicate the object and the node-ID,
together comprising the COB-ID.

CAN communication is prioritized so that messages with higher priority are transmitted
first. The arbitration field determines the message priority: The lower the number in the
arbitration field, the higher the message priority. ID 0 gives the highest priority. The
SimplIQ drives support the CAN version 2.0A (11-bit) addressing method only, meaning
that it ignores messages of 29 bits. A setup parameter (PP[13] - Node ID) selects the CAN
object identification to be used.

2.3 Client - Server Relations

A CAN master (or client) is a controller that makes requests to nodes to respond to its
commands. A CAN slave (or server) responds to the commands issued by the CAN
master. The CAN protocol permits both single-master and multiple-master networks.

The SimplIQ servo drives assume a single-master network arrangement, in which the
servo drives are the slaves and the machine controller or PLC is the master. Every servo
drive has a unique ID in the range [1…127]. The network master does not require an ID.
As a slave, the servo drive never sends an unrequested message, other than emergencies.
The drive responds only to messages addressed to its ID or to broadcast messages, which
have an ID of 0. All messages sent by a servo drive are marked with its own ID.

 If two servo drives have been assigned the same ID, the CAN network may crash.

CANopen DS 301 Implementation Guide CANopen Basics
MAN-CAN301IG (Ver. 1.7)

5

2.4 Inhibit Times

The inhibit time for a given message type is the minimum time that must elapse from the
time the message is first transmitted until the time that it may be transmitted again. The
purpose of inhibit times is to ensure that high-priority messages do not flood the bus
and thereby prevent service messages of lower priority from being transmitted. The
inhibit times of SimplIQ drives are defined only for asynchronous TPDOs, by
sub-index 3 of the associated transmission type object.

The resolution of the inhibit time is 100 microseconds, with an accuracy of 2 milliseconds.

 If several events occur during the inhibit time of a message, only the last message
will be transmitted when the inhibit time extinct . For example, if TPDO3 is
activated by digital input 1 and digital input 3 with an inhibit time of 10
milliseconds, then if a digital input 1 event emits TPDO3 at time 0, a digital input 3
event occurring 5 milliseconds later will not cause any TPDO3 transmission for the
next 5 millisecond. The TPDO3 transmission would be postponed, allowing other
messages to be transmitted, until the inhibit time is exhausted.

The DS 301 version 4.0 protocol allows the user to modify the inhibit time only for COBs
that are not valid (sub-index 1 of objects 0x1400 and 0x1800), while SimplIQ drives allow
the user to modify the inhibit time at any time, with pending messages being discarded
according to that time definition.

2.5 RTR – Remote Transmission Request

The RTR is not supported by the Elmo drive.

2.6 Object Dictionary

An object dictionary (OD) is a naming system that gives a unique identifier to each data
item — or “object” —that is communicated over the CAN bus. An object is identified by
an index and, if it is a complex object, also by a sub-index. A CANopen client can
manipulate an object of a CANopen server by referring to its identifier, according to the
access permission of the object. (An object’s access permission may be read-only, write-
only, or read-write.)

CiA DS 301 requires a set of mandatory objects for all CANopen devices. Other OD items
are predefined by CiA DS 301 to have fixed identifiers, if supported. The OD also
accommodates manufacturer-specific objects.

CANopen DS 301 Implementation Guide CANopen Basics
MAN-CAN301IG (Ver. 1.7)

6

2.7 Communication Objects

The data-byte units transported through a CAN network are called communication
objects (COBs). SimplIQ servo drive uses the following COB types:

COB Type Description

Service data object (SDO) SDO messages are used to manipulate OD objects
according to their IDs. The server receives the SDO,
which specifies in its message which object is to be
dealt with.
SDO messages can be chained to form a “domain
transfer,” which is useful for sending large data items
such as long strings. Domain transfers are time-
consuming, because the CAN bus is half-duplex. Each
time a data segment is downloaded, a full-sized data
segment is uploaded for verification, and vice versa.

Process data object (PDO) PDO messages are used to manipulate OD objects
without explicit reference to the object identifier, which
is possible if there is an a-priori convention concerning
the OD item referenced. Such conventions are called
“PDO mappings”; these are actually OD objects
themselves, and may be defined and manipulated using
an SDO.

Emergency (EMCY) Emergency messages are used by the servo drives to
warn of an exception. The EMCY is the only COB type
that a servo drive may transmit without first being
explicitly asked. EMCY objects are similar to servo
drive “interrupts”: they eliminate the need to poll the
servo drive continuously for the emergency status.

Network Management (NMT) NMT objects are used by CAN clients to initialize a
servo drive as a server.

Layer Setting Service (LSS) This service is used to assign IDs and baud rates to
newly-installed products.

Table 2-1: Communication Objects Used by SimplIQ Servo Drives

The type of COB transmitted is indicated in the arbitration field of the message, and
thereby determines its priority. The relation between bits 8 to 11 of the arbitration field
(COB-ID) and the COB type is presented in the following table:

CANopen DS 301 Implementation Guide CANopen Basics
MAN-CAN301IG (Ver. 1.7)

7

COB Type Bits 8 - 11 of COB-ID ID Range

NMT 0000 0

SYNC 0001 128 (80h)

Time Stamp 0010 256 (100h)

Emergency 0001 129…255 (81h…ffh)

PDO1 - Transmit 0011 385…511 (181h…1ffh)

PDO1 - Receive 0100 513…639 (201h…27fh)

PDO2 - Transmit 0101 641…767 (281h…2ffh)

PDO2 - Receive 0110 769…895 (301h…37fh)

PDO3 - Transmit 0111 897…1023 (381h…3ffh)

PDO3 - Receive 1000 1025…1151 (401h…47fh)

PDO4 - Transmit 1001 1153…1279 (481h…4ffh)

PDO4 - Receive 1010 1281…1407 (501h…57fh)

SDO - Transmit 1011 1409…1535 (581h…5ffh)

SDO - Receive 1100 1537…1663 (601h…67fh)

Error control (node guarding) 1110 1793…1919 (701h…77fh)

Table 2-2: COB Types

Example:
The COB-ID of PDO1, when received by node #2, is binary 01000000010, which is
decimal 514, or 202 hexadecimal. The IDs of the servo drives are set in the range 1…127.

2.8 Object Dictionary - Data Types

The Elmo CAN controller supports the following data types:

Index Object Name

0002 DEFTYPE Integer8

0003 DEFTYPE Integer16

0004 DEFTYPE Integer32

0005 DEFTYPE Unsigned8

0006 DEFTYPE Unsigned16

0007 DEFTYPE Unsigned32

0008 DEFTYPE Floating Point (Float)

0009 DEFTYPE Visible String

0020 DEFSTRUCT PDO CommPar

0021 DEFSTRUCT PDO Mapping

0022 DEFSTRUCT SDO Parameter

CANopen DS 301 Implementation Guide CANopen Basics
MAN-CAN301IG (Ver. 1.7)

8

Index Object Name

0040 DEFTYPE PVT DataPar

0041 DEFTYPE PT DataPar

0042 DEFTYPE Binary interpreter query

0043 DEFTYPE Binary interpreter command

0044 DEFTYPE DSP 402 PV data record

0081 DEFTYPE DSP 402 interpolated data configuration record

Table 2-3: Data Types

 Note:
Data Objects 0002 to 0004 are used as “dummy” entries.

Communication Parameter Record Object 0x20

Index Sub-index Field in PDO Communication Parameter Record Data Type

0020h 0h Number of supported entries in record UNSIGNED8

 1h COB-ID UNSIGNED32

 2h Transmission type UNSIGNED8

 3h Inhibit time UNSIGNED16

 4h Reserved UNSIGNED8

 5h Event timer UNSIGNED16

PDO Mapping Parameter Record Object 0x21

Index Sub-index Field in PDO Parameter Mapping Record Data Type

0021h 0h Number of mapped objects in PDO UNSIGNED8

 1h First object to be mapped UNSIGNED32

 2h Second object to be mapped UNSIGNED32

… … … …

 40h 64th object to be mapped UNSIGNED32

The four device-specific data types used by SimplIQ digital servo drives are as follows:

PVT DataPar Object 0x40

MSB LSB
Time (UNSIGNED8) Velocity (SIGNED24) Position (SIGNED32)

PT DataPar Object 0x41

MSB LSB
Position 2 (SIGNED32) Position 1 (SIGNED32)

CANopen DS 301 Implementation Guide CANopen Basics
MAN-CAN301IG (Ver. 1.7)

9

Binary Interpreter Query Object 0x42

MSB LSB
7 6 5 4 3 2 1 0
 Attribute

high
Attribute
low

Letter
low

Letter
high

For more information about the binary interpreter query, refer to Chapter 9.

Binary Interpreter Command Object 0x43

MSB LSB
7 6 5 4 3 2 1 0
Data
high

Data Data Data
low

Attribute
high

Attribute
low

Letter
low

Letter
high

For more information about the binary interpreter command, refer to Chapter 9.

DSP 402 Interpolated Mode PV Object 0x44

MSB LSB
Position 2 (SIGNED32) Velocity (SIGNED32)

DSP 402 Interpolated Time Period Record Object 0x80

Index Sub-index Field in Interpolation Time Period Record Data Type

0080h 0h Number of entries UNSIGNED8

 1h Interpolation time units UNSIGNED8

 2h Interpolation time index INTEGER8

DSP 402 Interpolated Data Configuration Record Object 0x81

Index Sub-index Field in Interpolation Time Period Record Data Type

0081h 0h Number of entries UNSIGNED8

 1h Maximum buffer size UNSIGNED32

 2h Actual buffer size UNSIGNED32

 3h Buffer organization UNSIGNED8

 4h Buffer position UNSIGNED16

 5h Size of data record UNSIGNED8

 6h Buffer clear UNSIGNED8

CANopen DS 301 Implementation Guide CANopen Basics
MAN-CAN301IG (Ver. 1.7)

10

2.9 Representation of Numbers

CAN communication delivers numerical data stored in binary form. Integers are stored
by their binary representation, while floating-point numbers are stored according to the
IEEE representation. SimplIQ digital servo drives support three types of data: short
integers (two bytes), long integers (four bytes) and floating-point numbers (four bytes).
These multiple-byte numbers are stored in the CAN messages according to CAN
standards, using the “little endian” (Intel-type) convention. With this method, the
number is inverted before storage: The most significant byte of the number receives the
lowest address and the least significant byte receives the highest address. More
information about the little endian method is provided in the Appendix of this manual.

Example:
The following is an 8-byte CAN message:

Bytes 0 - 1 0x1234

Bytes 2 - 3 0x5678

Bytes 4 - 7 0x9abcdef0

The CAN message data field will be as follows:

Byte Contents

0 0x34

1 0x12

2 0x78

3 0x56

4 0xf0

5 0xde

6 0xbc

7 0x9a

CANopen DS 301 Implementation Guide CANopen Basics
MAN-CAN301IG (Ver. 1.7)

11

Chapter 3: The Object Dictionary

The object dictionary is essentially a grouping of objects that are accessible via receive
and transmit SDOs. Part of the object can be mapped to transmit and receive PDOs
(TPDO and RPDO, respectively) in a predefined manner.

The following layout is used with the objects in the object dictionary:

Index (Hex) Object

0 Not used

0001 - 001F Static data type

0020 - 003F Complex data type

0040 - 005F Manufacturer-specific data type

0060 - 0FFF Reserved

1000 - 1FFF Communication profile area

2000 - 2FFF Manufacturer-specific profile area

6000 - 6FFF Standardized device profile area

A000 - FFF Reserved

The table that follows lists the objects supported by SimplIQ digital servo drives. Each
object is addressed by a 16-bit index. Some of the objects may include 8-bit sub-indices,
which are described in the object description. The object Name is that given by CiA or
Elmo according to object type. Access can be R (read only), W (write only) or R/W
(read/write). In the Can be Mapped column, N indicates that the object cannot be
mapped to a PDO, while Y indicates that the object can be mapped to a PDO or that it is
permanently mapped to a predefined PDO.

Name Index Description Access Mappable?

CAN controller
type

0x1000 Device type and functionality.
Constant value = 0x12D.

R N

Error register 0x1001 Contains error information. R N

Manufacturer
status register

0x1002 Returns status similar to SR
command.

R Y

Pre-defined
error field

0x1003 Returns previous emergency history.
Setting object 0x1003 sub-index 0 to 0
deletes error history.

R N

COB-ID for
SYNC message

0x1005 32-bit Dword, pre-defined. R N

Communication
cycle period

0x1006 Spacing, in µsec, between consecutive
SYNC signals. This parameter is
included for compatibility with the
standard OD, but it is ignored.

R/W N

CANopen DS 301 Implementation Guide The Object Dictionary
MAN-CAN301IG (Ver. 1.7)

12

Name Index Description Access Mappable?

Manufacturer’s
device name

0x1008 String that returns the drive name
such as “Harmonica”

R N

Hardware
version

0x1009 A string that conveys the information
in WS[30].

R N

Software
version

0x100A String that returns value of VR
command.

R N

Node ID 0x100B R N

Store
parameters

0x1010 Stores parameters in flash memory. R/W N

Restore
parameters

0x1011 Restore parameters from flash
memory.

R/W N

COB-ID for
Time Stamp
message

0x1012 Specifies COB-ID of Time Stamp
message.

R N

High-resolution
Time Stamp

0x1013 Defines a Time Stamp message with a
resolution of 1 µsec.

R/W N

COB-ID of
Emergency
message

0x1014 Defines COB-ID of the Emergency
object (EMCY).

R N

Consumer
heartbeat time

0x1016 Defines minimal acceptance rate for
heartbeat messages.

R/W N

Producer
heartbeat time

0x1017 Defines rate of generating heartbeats. R/W N

LSS address 0x1018 Address for ID and baud rate
configuration, according to DSP 305.

R N

OS interpreter 0x1023 OS prompt interpreter. R/W N

OS command
mode

0x1024 Mode command and status readout
of OS interpreter.

R/W N

Error behavior 0x1029 Defines behavior in a case of serious
device failure, according to CiA
DS 301.

R/W N

SDO1 server 0x1200 SDO1: server parameter. (link) R N

PDO1 RX
Comm.

0x1400 PDO1: receive communication
parameter. (link)

R/W N

PDO2 Rx
Comm.

0x1401 PDO2: receive communication
parameter.

R/W N

PDO3 Rx
Comm.

0x1402 PDO3: receive communication
parameter.

R/W N

PDO4 RX
Comm.

0x1403 PDO4: receive communication
parameter.

R/W N

CANopen DS 301 Implementation Guide The Object Dictionary
MAN-CAN301IG (Ver. 1.7)

13

Name Index Description Access Mappable?

PDO1 Rx Map. 0x1600 PDO1: receive mapping parameter.
(link)

R/W N

PDO2 Rx Map. 0x1601 PDO2: receive mapping parameter. R/W N

PDO3 Rx Map. 0x1602 PDO3: receive mapping parameter. R/W N

PDO4 Rx Map. 0x1603 PDO4: receive mapping parameter.
(link)

R/W N

PDO1 Rx
Comm.

0x1800 PDO1: transmit communication
parameter.

R/W N

PDO2 Tx
Comm.

0x1801 PDO2: transmit communication
parameter.

R/W N

PDO3 Tx
Comm.

0x1802 PDO3: transmit communication
parameter.

R/W N

PDO4 Tx
Comm.

0x1803 PDO4: transmit communication
parameter.

R/W N

PDO1 Tx Map. 0x1A00 PDO1: transmit mapping parameter. R/W N

PDO2 Tx Map. 0x1A01 PDO2: transmit mapping parameter. R/W N

PDO3 Tx Map. 0x1A02 PDO3: transmit mapping parameter. R/W N

PDO4 Tx Map 0x1A03 PDO4: transmit mapping parameter. R/W N

PVT data 0x2001 Bytes describing PVT command. W Y

PT data 0x2002 Bytes describing PT command. W Y

Fast position 0x2003 Reserved for future real-time
positioning modes.

ECAM data 0x2004 Fast, auto-increment entry to ECAM
table.

W Y

Binary
interpreter
input

0x2012 Set binary interpreter command. W Y

Binary
interpreter
output

0x2013 Get binary interpreter command. R Y

Recorded data
output

0x2030 Contains recorded data according to
request in RC binary command.

R N

Group ID 0x2040 Identifier used to address a group of
drives for coordinated commands.

R/W N

Amplifier free
running timer

0x2041 Transmits accurate 32-bit timer of
drive.

R Y

CAN controller
status

0x2082 CAN controller status register. R N

CANopen DS 301 Implementation Guide The Object Dictionary
MAN-CAN301IG (Ver. 1.7)

14

Name Index Description Access Mappable?

Begin on time 0x208A Used to start a synchronized motion
according to internal free running
timer.

R/W N

Firmware
download

0x2090 Similar to DF command. W N

Auxiliary
position actual
value

0x20A0 Actual position as taken from
auxiliary sensor input (PY).

R Y

Position error 0x20A1 Position error as calculated from
command and actual position value.
(PE).

R Y

Digital input 0x2200 Reflects the digital input (IP) R Y

Digital inputs
low byte

0x2201 Reflected Negative limit switch,
Positive limit switch and Home
switch.

R Y

User Integer 0x2F00 Provides an array of 24 integer
numbers for general-purpose use.

R Y

User Float
Array

0x2F01 Provides an array of 24 floating
numbers for general-purpose use.

R/W Y

ET Array 0x2F02 Enables ECAM table variables (ET[1]
to ET[255]) to be loaded.

R/W Y

PVT buffer head
pointer

0x2F11 PVT motion advance information. R Y

PVT buffer tail
pointer

0x2F12 PVT motion advance information. R Y

Buffered PTP
remained point

0x2F15 Used to detect number of remaining
points in DSP 402 Profile Position
buffered mode.

R Y

Asynchronous
PDO event

0x2F20 Defines which events emit a PDO. R/W N

Emergency
event

0x2F21 Defines which events emit an
emergency.

R/W N

Bus-off timeout 0x2F22 Defines bus-off timeout, after which
CAN communication will be renewed
if SimplIQ enters bus-off.

R/W N

Digital Input
TPDO Event
Parameters

0x2F23 Defines which digital input
transmissions will activate a TPDO
driven by a digital input event.

R/W N

CANopen DS 301 Implementation Guide The Object Dictionary
MAN-CAN301IG (Ver. 1.7)

15

Name Index Description Access Mappable?

Last Time
Stamp
correction

0x2F30 Difference between last SYNC time
and last Time Stamp.
Serves to estimate how accurately the
internal amplifier's clock is locked on
the master clock.

R Y

Internal µsec
counter at last
SYNC

0x2F31 Internal µsec counter of drive,
sampled at last SYNC. Useful when
one drive is used to synchronize
entire network.

R Y

Configuration
object

0x2F40 Configure functionality of the node. R/W N

Table 3-1: Object Dictionary

CANopen DS 301 Implementation Guide The Object Dictionary
MAN-CAN301IG (Ver. 1.7)

16

Chapter 4: Service Data Objects (SDOs)

SimplIQ digital servo drives use a single transmit server SDO (COB 581h-6ffh) and a single
receive server SDO (COB601h-67fh). This is according to CiA definitions and priority
allocations for 11-bit addressing.

When using SDOs, it is important to remember that:

 An SDO has a lower priority than a PDO.

 An SDO session is not complete until it is confirmed.

For example, if an SDO is used to change a PDO mapping, the SDO should be issued only
after the last session in which the PDO is completed, and the newly-mapped PDO should
not be used until the SDO mapping change is confirmed.

SDOs implement the CMS multiplexed domain protocols.

 Notes:
In an SDO data exchange, each client message may be backed by one and only

CANopen DS 301 Implementation Guide Service Data Objects (SDOs)
MAN-CAN301IG (Ver. 1.7)

one server message.

An SDO carries a toggle bit, which varies in every consecutive message of a
domain transfer, so that the loss of a single message can be tracked.

An SDO transfer can be terminated using the special “Abort domain transfer”
message.

An SDO message carries a maximum of seven bytes of data. One byte (the header
byte) is always dedicated to overhead data.

The length of an SDO message is always eight bytes, even if some of them are
unused. Unused data bytes are marked as such in the message header.

The maximum length of payload data in an expedited SDO is four bytes.

17

4.1 Initiate SDO Download Protocol

This protocol is used to implement the Initiate SDO Download service.

Client to server:
0 1 4 8

7…5 4 3…2 1 0

css = 1 x n e s m d (data)

Server to client:
0 1 4 8

7…5 4…0

scs = 3 x m reserved

where:

css Client command specifier
1: Initiate download request

scs Server command specifier
3: Initiate download response

n Number of bytes in d that do not contain data. Only valid if
e = 1 and s = 1; otherwise it is 0. Bytes [8-n, 7] do not contain data.

e Transfer type
0: Normal transfer
1: Expedited transfer

s Size indicator
0: Data set size is not indicated
1: Data set size is indicated

m Multiplexor. Represents index/sub-index of data to be transferred by
SDO.

d Data
e = 0, s = 0: d is reserved for future use.
e = 0, s = 1: d contains number of bytes to be downloaded.
Byte 4 contains LSB and byte 7 contains MSB.
e = 1, s = 1: d contains data of length 4-n to be downloaded. The encoding
depends on the type of data referenced by index and sub-index.
e = 1, s = 0: d contains an unspecified number of bytes to be downloaded.

x Not used; always 0.

reserved Reserved for future use; always 0.

CANopen DS 301 Implementation Guide Service Data Objects (SDOs)
MAN-CAN301IG (Ver. 1.7)

18

4.2 Download SDO Protocol

This protocol is used to implement the Download SDO Segment service.

Client to server:
0 1 8

7…5 4 3…1 0

css = 0 t n c seg-data (segment data)

Server to client:
0 1 8

7…5 4 3…0

scs = 1 t x reserved

where:

css Client command specifier
0: Download segment request

scs Server command specifier
1: Download segment response

seg-data Maximum seven bytes of segment data downloaded. Encoding depends
on type of data referenced by index and sub-index.

n Number of bytes in seg-data that do not contain segment data. Bytes
[8-n, 7] do not contain segment data. n = 0 if no segment size is indicated.

c Whether or not there are still more segments to be downloaded:
0: More segments to be downloaded
1: No more segments to be downloaded

t Toggle bit, which alternates for each subsequent segment to be
downloaded. First segment has toggle-bit set to 0. Toggle bit is equal for
request and response message.

x Not used; always 0.

reserved Reserved for future use; always 0.

CANopen DS 301 Implementation Guide Service Data Objects (SDOs)
MAN-CAN301IG (Ver. 1.7)

19

4.3 Initiate SDO Upload Protocol

This protocol is used to implement the Initiate SDO Download service.

Client to server:
0 1 4 8

7…5 4…0

css = 2 x m reserved

Server to client:
0 1 4 8

7…5 4 3…2 1 0

scs = 2 x n e s m reserved

where:

css Client command specifier
2: Initiate upload request

scs Server command specifier
2: Initiate upload response

n Number of bytes in d that do not contain data. Only valid if
e = 1 and s = 1; otherwise it is 0. Bytes [8-n, 7] do not contain segment
data.

e Transfer type
0: Normal transfer
1: Expedited transfer

s Size indicator
0: Data set size is not indicated
1: Data set size is indicated

m Multiplexor. Represents index/sub-index of data to be transferred by
SDO.

d Data
e = 0, s = 0: d is reserved for future use.
e = 0, s = 1: d contains the number of bytes to be uploaded.
Byte 4 contains LSB and byte 7 contains MSB.
e = 1, s = 1: d contains data of length 4-n to be downloaded. The encoding
depends on the type of data referenced by index and sub-index.
e = 1, s = 0: d contains an unspecified number of bytes to be uploaded.

x Not used; always 0.

reserved Reserved for future use; always 0.

CANopen DS 301 Implementation Guide Service Data Objects (SDOs)
MAN-CAN301IG (Ver. 1.7)

20

4.4 Upload SDO Segment Protocol

This protocol is used to implement the Upload SDO Segment service.

Client to server:
0 1 8

7…5 4 3…0

css = 3 t x reserved

Server to client:
0 1 8

7…5 4 3…1 0

scs = 0 t n c seg-data

where:

css Client command specifier
3: Upload segment request

scs Server command specifier
0: Upload segment response

t Toggle bit, which alternates for each subsequent segment to be uploaded.
First segment has toggle-bit set to 0. Toggle bit is equal for request and
response message.

c Whether or not there are still more segments to be uploaded:
0: More segments to be uploaded
1: No more segments to be uploaded

seg-data Maximum seven bytes of segment data uploaded. Encoding depends on
type of data referenced by index and sub-index.

n Number of bytes in seg-data that do not contain segment data. Bytes
[8-n, 7] do not contain segment data. n = 0 if no segment size is indicated.

x Not used; always 0.

reserved Reserved for future use; always 0.

CANopen DS 301 Implementation Guide Service Data Objects (SDOs)
MAN-CAN301IG (Ver. 1.7)

21

4.5 Abort SDO Transfer Protocol

This protocol is used to implement the Abort SDO Transfer service.

Client to server or server to client:
0 1 4 8

7…5 4…0

cs = 4 x m d (data)

where:

cs Command specifier
4: Abort transfer request

x Not used; always 0.

m Multiplexor. Represents index/sub-index of SDO.

d Four-byte abort code giving reason for abort, encoded as Unsigned32
value.

The SDO Abort codes are listed in the following table:

Abort Code Description
0503 0000h Toggle bit not alternated.
0504 0001h Invalid or unknown client/server command specifier.
0504 0005h Out of memory.
0601 0000h Unsupported access to an object.
0601 0001h Attempt to read a write-only object.
0601 0002h Attempt to write a read-only object.
0602 000h Object does not exist in object dictionary.
0604 0041h Object cannot be mapped to PDO.
0604 0042h Number and length of objects to be mapped exceeds PDO length.
0604 0043h General parameter incompatibility.
0604 0047h General internal incompatibility in device.
0606 0000h Access failed due to hardware error.
0607 0010h Data type does not match, length of service parameter does not match.
0607 0012h Data type does not match, service parameter too long.
0607 0013h Data type does not match, service parameter too short.
0609 0011h Sub-index does not exist.
0609 0030h Value range of parameter exceeded (only for write access).
0609 0031h Value of parameter written too high.
0609 0032h Value of parameter written too low.
0609 0036h Maximum value is less than minimum value.
0800 0000h General error.
0800 0020h Data cannot be transferred to or stored in application.

CANopen DS 301 Implementation Guide Service Data Objects (SDOs)
MAN-CAN301IG (Ver. 1.7)

22

Abort Code Description
0800 0021h Data cannot be transferred to or stored in application due to local

control.
0800 0022h Data cannot be transferred to or stored in application due to present

device state.
0800 0023h Object dictionary dynamic generation failed or no object dictionary is

present (for example, object dictionary is generated from file and
generation has failed due to a file error).

Table 4-1: SDO Abort Codes

When the abort code is 0800 0000h, the actual error can be retrieved using the EC
command.

4.6 Uploading Data Using an SDO

Data is uploaded in two basic formats:

 A short data item (up to four bytes) is uploaded by a single message conversation,
called an expedited SDO.

 Longer data items require a longer conversation and are called segmented transfers.

Example of an expedited SDO:
An SDO is used to read the number of SDOs supported by the servo drive. The result
(one transmit SDO and one receive SDO) is in object 0x1000 in the OD and is formatted as
the 32-bit word 0x00020192. The client message body is outlined in the following table
(% indicates a binary number):

Byte Value Description Comment

0 %01000000 Header Leading %010 is client command specifier
(ccs) for Initiate Domain Upload.

1 0x00 Index (LO)

2 0x10 Index (HI) Use little endian.

3 0 Sub-index No sub-index; therefore set to 0.

4 - 8 0 Reserved

Table 4-2: Expedited SDO - Client Message

CANopen DS 301 Implementation Guide Service Data Objects (SDOs)
MAN-CAN301IG (Ver. 1.7)

23

The server response is outlined in the following table:

Byte Value Description Comment

0 %01000011 Header Bits 7…5: %010 is client command specifier
(css) for Initiate Domain Upload.
Bits 3, 2: n bits that indicate that all data
bytes are relevant.
Bits 1, 0: %11, to expedite transfer and d
contains information.

1 0x00 Index (LO)

2 0x10 Index (HI) Use little endian.

3 0 Sub-index No sub-index, so it is set to 0.

4 0x92 Data: 0x00020192 in
little endian format

5 0x01

6 0x02

7 0

Table 4-3: Expedited SDO - Server Response

4.7 Downloading Data Using an SDO

Data downloading with SDOs is very similar to data uploading. It can be handled in a
single message conversation (expedited transfer) or in a segmented conversation. A
detailed example of an expedited download transfer is given in section 5.3.6.

4.8 Error Correction

Included in an SDO transaction are features that enable error detection and correction.
Errors can be detected with both software and hardware. Hardware error conditions
relate to overrun, excessive line noise, broken lines or other malfunctions of the physical
layer. The toggle bit is used for software detection; it correlates each domain segment
with its previous and next segments. An unexpected toggle bit signals an error.

An Elmo slave that receives a corrupted message always terminates the SDO sequence
with an “Abort domain transfer” message, structured as follows:

CANopen DS 301 Implementation Guide Service Data Objects (SDOs)
MAN-CAN301IG (Ver. 1.7)

24

Byte Description
0 0x80
1 – 2 Index
3 Sub-index
4 Additional code
5 Error code
6 – 7 Error class

Table 4-4: Abort Domain Transfer Message Structure

Fields 4 to 7 are described fully under “Abort SDO Transfer Protocol” in this manual.

CANopen DS 301 Implementation Guide Service Data Objects (SDOs)
MAN-CAN301IG (Ver. 1.7)

25

Chapter 5: Process Data Objects (PDOs)

5.1 Receive PDOs

RPDOs are used to receive predefined and unconfirmed messages. An RPDO is received
through use of an event, which may be asynchronous (such as “Message Received”) or
synchronous with the reception of a SYNC. Four receive PDOs are used with the Elmo
drive. The following must be indicated:

 Objects that are mappable and have write access can be mapped to each RPDO .

 Execution of the mapped objects begins in the lower index of the relevant mapping
object (0x1600 - 0x1603).

 High-priority objects, used for high-speed motion modes, can be mapped to an RPDO
to avoid the overhead in using the standard interpreter. This mapping is dynamic,
according to the setting of the PDO mapping at index 0x1600 - 0x1603 by the
appropriate SDO. In a drive, only one fast reference object can be mapped to a single
RPDO. The fast reference objects that can be mapped to an RPDO are:

Index Meaning Access

2001h PVT motion command Write

2002h PT motion command Write

2003h Reserved

2004h ECAM entry Write

 All type of objects can be mapped. Unsigned8, Signed8, Unsigned16, signed16,
Unsigned32, and SignedT32 can be mapped. Manufacture specific object such as
Binary interpreter and PVT\PT can also be mapped.

 RPDO1-4 can be freely mapped. The only constraints are that only one of the objects
0x2001 – 0x2004 may be mapped to an RPDO at a time, and also none of these objects
may be mapped to more than one RPDO’s simultaneously.

 Data of RPDOs mapped to objects 0x2001-0x2004 is processed immediately upon
reception.

 Data of RPDOs is queued and it is passed for interpretation and execution at the
next available background loop (Idle Loop) and according to the transmission type.

 The transmission type associated to the Rx mapping can be either synchronous
where the data of the RPDO is passed for executing after the occurrence of the
following SYNC (value =1), or asynchronous (value=255 or 254) in which the data of
the RPDO is passed to the application immediately after reception and processed on
the next Idle loop.

 At most one copy of each mapped RPDO can be stored for synchronous execution. If
same RPDO arrives before next SYNC, it overwrites the previous with no
notification.

CANopen DS 301 Implementation Guide Process Data Objects (PDOs)
MAN-CAN301IG (Ver. 1.7)

26

 A change in RPDO mapping wipes any pending synchronous or asynchronous
queued RPDO s of that type. The user must be aware and responsible.

 Change of transmission type from synchronous to asynchronous does not wipe
pending instances.

 Changing transmission type to synchronous does not wipe any queued
asynchronous instances.

 Objects can receive data from SDO and RPDO on the same time. User must be aware
that the result of such case cannot be predicted. The final value of the object maybe
either the SDO or the RPDO data.

 RPDOs cannot be retrieved by a remote transmitting (RTR).

Error Cases

When an RPDO fails to interpret, an emergency message 0x6300 0x01 is transmitted.

There might be several objects mapped into the same RPDO. The EMCY message
identifies the objects that failed. A failure is consider when the received data could not be
interpreted or executed. Refer to the “RPDO error handling” section in this manual.

In some cases Elmo’s error code is produced. The emergency may contain this error code.

Example of RPDO mapping:
In order to set PDO1 to program PT-type motion commands (object 0x2002), set the object
at index 0x1600 (PDO mapping, type defined by object 0x21).

Sub-index 0 Unsigned8 1
Sub-index 1 Unsigned32 0x20020020

The PDO mapping may be set using a single expedited SDO, which will be:

Byte Value Description

0 0x23 Initiate download, expedited, index valid, data valid.

1 0 Index (LO) to store at.

2 0x16 Index (HI) to store at.

3 1 Sub-index to store at.

4 0x20 Data length

5 0 Sub-index

6 0x02 High data

7 0x20 Low data

Table 5-1: Service Data Objects

The SDO is answered by the following:

Byte Value Description

0 0x67 Initiate download, expedited, index valid, data valid, no failure.

CANopen DS 301 Implementation Guide Process Data Objects (PDOs)
MAN-CAN301IG (Ver. 1.7)

27

1 0 Index to store at.

2 0x16 Index to store at.

3 1 Sub-index to store at.

4 0 Reserved.

5 0

6 0

7 0

Table 5-2: Answered SDO

5.2 Transmit PDOs

Four transmit PDOs can be used in Elmo drives. TPDOs are used to retrieve an object
(data) from the drive. Objects that have read access and are mappable can be mapped to
each one of the TPDOs. The transmitted data inside the TPDO is ordered according to the
mapping order. The data starting from the LSB data is mapped first - in the lower index
of the relevant mapping object.

5.3 PDO Mapping

PDO mapping is a convention that assigns (maps) an object from the object dictionary
(data payload) to a PDO. Once mapped, the PDO can carry the assigned data items
without explicit reference to the object dictionary, thereby saving on communication and
CPU overhead.

Only a subset of the objects in the object dictionary can be mapped to a PDO, which can
either receive (RPDO) or transmit (TPDO). The mapping of an RPDO enables reception of
commands and variables — for example, efficient transmission of high-speed online
motion commands to the drive — whereas the mapping of a TPDO enables the drive to
send a predefined message in response to an event.

A TPDO is considered synchronous if triggered by a SYNC signal, and asynchronous if
triggered by another event.

An RPDO is buffered upon reception; it is sent for interpretation immediately (when
defined as asynchronous) or upon receipt of the next SYNC signal (when defined as
synchronous).

5.3.1 The Mapping Trigger – Transmission Type

The transmission of a TPDO and RPDO is triggered by an event, which is defined by the
PDO communication parameters: sub-index 2 of objects 0x1800 to 0x1803 (TPDO) and
sub-index 2 of objects 0x1400 to 1403 (RPDO). These object dictionary entries are
transmission types. The data type of the PDO parameter object is described in object
0x20.

CANopen DS 301 Implementation Guide Process Data Objects (PDOs)
MAN-CAN301IG (Ver. 1.7)

28

PDO transmission types can be one of the following:

Transmission Type Description

0 Synchronous transmission performed once, at next SYNC.

N=1…240 Synchronous transmission performed once per 0 < N ≤ 240
accepted SYNC signals.

254 Asynchronous transmission in response to a manufacturer-
specific event.

255 Asynchronous transmission in response to a device profile (such
as DSP 402).

The Elmo drive treats type 254 and 255 alike.

5.3.2 The Synchronous Trigger

Synchronous triggers are always related to the previous SYNC reception.

The RPDO transmission type is 1. The received message is buffered but actually
transmitted for execution at the next SYNC message. Only one RPDO can be buffered for
synchronous trigger. If another RPDO arrives before the SYNC, it overrides the previous
RPDO without any notification. This method enables the simultaneous synchronization
of executing commands in several drives. When a SYNC arrives, the buffered message is
performed in the next available background cycle (Idle loop). Elmo fast reference objects
(0x2001-0x2004) are executed immediately after reception regardless of transmission
type.

 Objects can receive data from SDOs and RPDOs simultaneously. Be aware that
when this occurs, the results are unpredictable. The final value of the object may be
either the SDO or the RPDO data.

With TPDOs, the message is transmitted according to transmission type value 1 to 240,
where 1 indicates on each single SYNC, 2 means every second SYNC message, and so on.

5.3.3 The Asynchronous Trigger

Asynchronous triggers are defined in the device-specific protocol (such as DSP-402) or by
Elmo manufacture-specific object 0x2F20.

When the device-specific protocol is used, the transmission type is 255 and the
asynchronous behavior is defined in the object description.
A transmission type of 0 means that the message shall be transmitted after occurrence of
 The SYNC but acyclic (not periodically), only if an event occurred before the SYNC.

When the Elmo manufacture-specific object is used, each sub-index of object 0x2F20
defines trigger events for a single TPDO. The settings for the object go into effect only if
the TPDO communication parameters are set to transmission type 254, and if the TPDO is
correctly mapped. The Elmo drive treats transmission type 254 and transmission type 255
alike.

CANopen DS 301 Implementation Guide Process Data Objects (PDOs)
MAN-CAN301IG (Ver. 1.7)

29

5.3.4 RPDO Error Handling

When an RPDO fails to be interpreted, an emergency message is transmitted.

Several objects may be mapped into the same RPDO. The EMCY message identifies the
objects that failed. A failure occurs when the received data cannot be interpreted or
executed.

In some cases, the Elmo error code is produced and may be included in the EMCY
message.

The general emergency message structure is as follows:
0
1

Error code

2 Error register
3 Elmo error code, for PVT/PT and RPDO messages only (refer to the SimplIQ

Software Manual)
4
5

Error code data field 1

6
7

Error code data field 2

In case of an RPDO:

Error code field: 0x6300

Error register: 0x01

Elmo error code: 0 – RPDO failed without a relative error
 > 0: RPDO failed with this error code

Error code data fields:
The relevant mapped object that failed according to the 32 bits mapping object.

Byte 4-5: Object size, in bits
Byte 6: Sub index
Byte 7: Index

The failed RPDO emergency can be masked by clearing bit 8 in object 0x2F21.

5.3.5 Mapping Parameter Objects

Objects 0x1A00 to 0x1A03 define the mapping for TPDOs. Objects 0x1600 – 0x1603 define
the mapping for RPDOs. The type of PDO mapping parameter is described in object 0x21.

The method of mapping an object is defined in objects 0x1600 - 0x1603.

CANopen DS 301 Implementation Guide Process Data Objects (PDOs)
MAN-CAN301IG (Ver. 1.7)

30

Example of TPDO mapping:
A drive will transmit the position value (object 0x6064, sub-index 0, INTEGER32), the
PVT buffer head pointer (object 0x2F11, sub-index 0, INTEGER16) and PVT buffer tail
pointer (object 0x2F12, sub-index 0, INTEGER16) per every accepted SYNC signal,
according to the following procedure:

Step Explanation

Set 0 to 0x1A00(0) Stop all emissions of TPDO1.

Set 0x60640020 to
0x1A00(1)

Program the position value (object 0x6064) to first 4 bytes of
the PDO.

Set 0x2F110010 to
0x1A00(2)

Program object 0x2F11 for next 2 bytes (PVT head pointer).

Set 0x2F120010 to
0x1A00(3)

Program object 0x2F12 for next 2 bytes (PVT tail pointer).

Set 1 to 0x1800(2) Set transmission type in PDO communication parameters to
“Transmit every SYNC.” Other PDO communication
parameters are not programmable.

Set 3 to 0x1A00(0) Activate the three mapped objects.

In this example, xxxx(y) indicates sub-index y of object xxxx.

A PDO mapping element is a 32-bit bit field (object 0x21), divided as follows:

16-bit index 8-bit sub-index Object length: 8 bits

5.3.6 Default Values

Default values of PDO mapping parameters are used at:

 Power up

 NMT communication reset (NMT 81h)

 NMT node reset (NMT 82h)

In these cases, the values of the PDO parameters receive the following:

Receive PDO 1 mapped to the DSP-402 controlword in the following manner:

Index Sub-index Name Default Value

1400h 0h Number of entries 2

 1h COB-ID used by PDO 4000027Fh

 2h Transmission type 255

Index Sub-index Name Default Value

1600h 0 Number of mapped entries 1

 1 Controlword 6040 00 10h

CANopen DS 301 Implementation Guide Process Data Objects (PDOs)
MAN-CAN301IG (Ver. 1.7)

31

Transmit PDO 1 monitors the drive behavior by transmitting the statusword whenever it
changes (typically after reception of a controlword):

Index Sub-index Name Default Value

1800h 0h Number of entries 3

 1h COB-ID used by PDO 4000001FFh

 2h Transmission type 255

 3h Inhibit time 0

Index Sub-index Name Default Value

1600h 1h Number of entries 1

 Statusword 6041 00 10h

Index Sub-index Name Default Value

2F20h 1h TPDO1 asynchronous events 0

 The asynchronous transmission of TPDO1 reflects changes performed
3 milliseconds prior to transmission.

Receive PDO 2 is mapped to the binary interpreter by default. This is done for
compatibility reasons and to enable communication with the Elmo Composer.

Index Sub-index Name Default Value

1401h 0h Number of entries 2

 1h COB-ID used by PDO 4000037Fh

 2h Transmission type 254

Index Sub-index Name Default Value

1601h 0 Number of entries 1

 1 Binary interpreter command 2013 00 40h

CANopen DS 301 Implementation Guide Process Data Objects (PDOs)
MAN-CAN301IG (Ver. 1.7)

32

Transmit PDO 2 is mapped to the binary interpreter result object, transmitted each time
the binary interpreter completes its processing. The event behavior is set by object
0x2F20, defined in the CANopen Implementation Manual.

Index Sub-index Name Default Value

1801h 0h Number of entries 3

 1h COB-ID used by PDO 400002FFh

 2h Transmission type 254

 3h Inhibit time 0

Index Sub-index Name Default Value

1A01h 1h Number of entries 1

 2h Binary interpreter result 2014 00 40h

Index Sub-index Name Default Value

2F20h 2h TPDO2 events 0x8000000

CANopen DS 301 Implementation Guide Process Data Objects (PDOs)
MAN-CAN301IG (Ver. 1.7)

33

Chapter 6: Emergency (EMCY)

The Emergency object COB-ID is 0x81 to 0xFF. EMCY objects are fully defined in CiA
DS 301. The structure of the manufacturer-specific emergency message is as follows:

0
1

Error code

2 Error register
3 Elmo error code (refer to SimplIQ Software Manual)

4
5

Error code data field 1

6
7

Error code data field 2

 Unused bytes must be set to zero.

6.1 Emergency Configuration

The events listed in this chapter can be configured to indicate which will emit an
emergency message, using object 0x2F21.

6.2 Emergency Codes Related to Failure

SimplIQ digital servo drives issue an emergency code in response to an abnormal
condition. All emergencies can be divided into two groups: those that can be masked and
those that cannot. For a description of emergency codes that can be masked, refer to
object 0x2F21. Emergency codes that cannot be masked are related to PVT/PT motion
and are described in section 6.4 following.

6.3 Emergency Codes for Motor Faults

For a description of emergencies related to motor faults, refer to object 0x2F21 and to the
MF command section in the SimplIQ Command Reference Manual.

6.4 Emergency Codes Related to PVT/PT Motion

During PT/PVT motion, the servo drive may issue emergency objects in order to indicate
an error or to signal that it is in immediate need of additional data to prevent data queue
underflow.

CANopen DS 301 Implementation Guide Emergency (EMCY)
MAN-CAN301IG (Ver. 1.7)

34

The following table lists the supported CAN emergencies. The Emergency error code for
all messages in the table is 0xFF00, and the error register is 0x81.

Error
Code
(Hex)

Symbolic Name

Reason

Data Field

0x56 PVT_QUEUE_LOW Number of valid PVT data
rows has dropped below
value stated in MP[5].

Field 1: Write pointer
Field 2: Read pointer

0x5B BAD_HEAD_POINTER Write pointer out of physical
range [1…64] of PVT table.
MP[6] setting may be wrong.

Value of MP[6]

0x34 PVT_QUEUE_FULL Attempt made to program
more PVT points than
supported by queue.

Field 1: Index of PVT
table entry that could
not be programmed

0x7 BAD_MODE_INIT_DATA Cannot initialize motion due
to bad setup data. Write
pointer is outside range
specified by start pointer and
end pointer.

0x8 MOTION_TERMINATED Mode terminated and motor
automatically stopped (in
MO=1).

Field 1: Write pointer
Field 2:
1: End of trajectory in
non-cyclic mode
2: Zero or negative
time specified for
motional interval
3: Read pointer
reached write pointer

0xA6 OUT_OF_MODOLU The position is more than 2
Modolu.

Table 6-1: Emergency Codes (PVT/PT Motion)

For more details, refer to object 0x2F21.

CANopen DS 301 Implementation Guide Emergency (EMCY)
MAN-CAN301IG (Ver. 1.7)

35

Chapter 7: Network Management (NMT)

Only the minimum, required, set of network management (NMT) services is supported
by SimplIQ. NMT commands are used to control the communication state of the servo
drive and to broadcast manufacturer messages to all other connected servo drives.

The following network communication states are supported:

State Description

Unpowered/Initialization Servo drive is not ready, or it is booting. Drive will not
respond to communication and will not transmit anything.

Pre-operational Servo drive boot sequence is complete, but no command has
been received to enter operational mode. The servo drive will
respond to SDO and NMT messages, but not to PDOs.

Operational Servo drive is fully operational, responding to PDO, SDO
and NMT messages.

Prepared Servo drive has received a stop-node command and can
respond only to NMT services.

Stopped Servo drive can respond only to NMT objects (including
heartbeats).

Table 7-1: Network Management (NMT)

When the servo drive is powered on, it enters the initialization state. After completing the
boot sequence, it automatically enters the pre-operational state. The transition between
pre-operational, operational and prepared states is carried out according to NMT
messages. The COB-ID of an NMT command is always 0.

An NMT message is always two bytes long: the first byte is the command specifier and
the second byte is the ID of the units that are to respond to the message. If the ID is 0, the
NMT message will be executed by the entire set of connected servo drives.

The following NMT services are supported:

Command Specifier Service

1 Start remote node (go to operational).

2 Stop remote node (go to prepared).

128 (0x80) Enter pre-operational state.

129 (0x81) Reset node (perform full software reset).
130 (0x82) Reset communication (reload communication parameters from

flash, reset CAN software and enter pre-operational state).

Table 7-2: Supported NMT Services

Note: It is recommended to turn off the motor and kill any user program before executing
NMT 130.

CANopen DS 301 Implementation Guide Network Management (NMT)
MAN-CAN301IG (Ver. 1.7)

36

Chapter 8: SYNC and Time Stamp

The SYNC message has two uses:

 Synchronize the operation of synchronous PDOs. Only synchronous TPDOs can be
used to transmit data from SimplIQ digital servo drives upon receiving a SYNC signal;
synchronous RPDOs are not supported.

 Synchronize the motion clock of the servo drive with a clock in the network master.
The synchronization is made in conjunction with the Time Stamp message. The
motion clock of the servo drive counts microseconds (regardless of the sampling time
of the drive). It is cyclic and has 32 bits, meaning that it completes a full cycle in 4,295
seconds (approximately 72 minutes). When the motion clocks of all connected servo
drives are synchronized to the motion clock of the master, multiple servo drives can
perform complex synchronized motion with exact timing set by the network master.

The drives are synchronized by the transmission of a SYNC message, whose arrival time
is captured by the drive. Upon reception of the SYNC, the drive latches its internal timer.

A Time Stamp is a 32-bit message that contains the master internal clock as generated
upon receipt of the client’s own SYNC. The Time Stamp causes a clock synchronization
cycle to be executed. The drive uses the Time Stamp as an absolute timer and adjusts its
internal time in relation to the time latched in the last SYNC1. To synchronize the master
and drive clocks to full precision, the synchronization process is filtered in order to
ensure that the timing jitter of the time stamping process does not adversely affect
motion smoothness. It takes about 200 SYNC-Time Stamp pairs to ensure that all clocks
are fully synchronized.

COB-ID 256 (0x100) is a constant dedicated ID used for this purpose. The master can send
Time Stamps at any time.

A Time Stamp always refers to the previous SYNC message and must come no later than
5 seconds after the relevant SYNC.

1 The highest value to adjust in a single time message is 250 milliseconds.

CANopen DS 301 Implementation Guide SYNC and Time Stamp
MAN-CAN301IG (Ver. 1.7)

37

Chapter 9: Binary Interpreter Commands

With CAN, the interpreter commands are sent in binary form and are used for setting
and retrieving all numerical data of the SimplIQ digital servo drives setup. The commands
used by the binary interpreter for CAN communication are very similar to commands of
the ASCII interpreter used for RS-232 communication.

The binary interpreter does not support string operations. Getting and setting strings
may be performed by accessing the appropriate messages via SDOs, using the OS
interpreter. Expressions (such as AC=2*DC+1000) are not supported by the binary
interpreter.

The following table summarizes the main differences between the binary interpreter used
for CAN communication and the ASCII interpreter used for RS-232.

Feature ASCII Interpreter Binary Interpreter

Command length Depends on data. Fixed: 8 bytes for Set commands;
4 bytes for Get commands.

Delimiter ; or <CR> for commands and
servo drive responses.

None.

Servo drive
responses to Set
commands

Always. Drive does not respond to Set
commands. An emergency object
is sent if command execution
fails.

Long response
strings

Returned by certain
commands, such as LS and
BH.

No support for returned long
strings, which are read via SDOs.

Table 9-1: Comparison of ASCII vs. Binary Interpreter Commands

TPDO2 is mapped by default to the transmit binary interpreter object (0x2012) and
RPDO2 is mapped by default to the receive binary interpreter object (0x2013). TPDO2 is
transmitted as an unsynchronized “Binary Interpreter complete” event.

The binary interpreter supports three types of commands:

 Set value
These commands are eight bytes in length. The transmitted message includes either
the reflection of the Set command or an error code, if a failure has occurred.

 Get value
These commands can be four or eight bytes in length. An 8-byte response includes
the reflection of the command and the resulting numerical value, and an error if a
fault has occurred.

 Execute command
This command can be four or eight bytes in length. An 8-byte response includes the
reflection of the command and the resulting numerical value, and an error if a fault
has occurred.

CANopen DS 301 Implementation Guide Binary Interpreter Commands
MAN-CAN301IG (Ver. 1.7)

38

If an interpreter command cannot be serviced for any reason, bit 6 in byte 3 of TPDO2 is
set on, and byte 4 of the response contains the Elmo error code (refer to the EC command
section of the SimplIQ Command Reference Manual).

9.1 Binary Interpreter Commands and Results

The sequences in this section illustrate the binary interpreter options for setting, querying
and executing commands.

9.1.1 Set and Query Commands

The host (client) sends commands (RPDO2) for setting variables in eight bytes (DLC=8).
The drive (server) transmits the reply (TPDO2) as an asynchronous event of the received
object.

9.1.1.1 RPDO2 Structure

RPDO2 is used to set values for the drive and query (get) values from it. The structure of
the command is as follows:

 Bytes 0 to 3 are the header, which includes the command, command index (when
needed) and data type (float or integer).

 Bytes 4 to 7 are the data, which is always four bytes. The format can be integer or
float. The bytes are interpreted in little endian format (see Appendix).

The following table describes the format in which the host sends commands to the drive:

Byte 0 1 2 3 4 - 7
Bits 0…7 0…7 0…7 0…5 6 7
Description First

command
character

Second
command
character

Index for array
parameter. 0 for
scalar command

See
note

0: Integer
1: float

Data in little
endian
format

 Bytes 0 and 1, which represent the command character in ASCII, must be
uppercase.

Byte 3, bit 6:
When this bit is set to 1, the drive treats the command as a “query” and not as a “setting.”
In this case, the rest of the data bytes are discarded and the drive replies to the command
according to 4 bytes DLC. For compatibility reasons, bytes 4 to 7 should be 0.

 Notes:

In array commands in which the index is used (as in ET[100]), the lowest
significant bits are in byte 2 (bits 0 to 7) and the most significant bits are in

CANopen DS 301 Implementation Guide Binary Interpreter Commands
MAN-CAN301IG (Ver. 1.7)

byte 3.

39

 Alw
transmitted message, even if the numerical data typ
give

ays use the bit 7 of byte 3 to indicate the data type (float or integer) in the
e is known in advance and

n in the reference manual. This enables Elmo to guarantee that the type of
numerical data returned for any interpreter command will remain unchanged in

ure sion

E am
CL[1] is set to 1.0, which is 3F800000h in hex IEEE format.

2 3 4 5 6 7

fut ver s.

x ple 1:

CL[1]=1.0

Byte 0 1
Hex value 43 4C 0 80 F0 49 02 0

 Bit 7 in b 3 is o 1 t dicat hat th lue i at.

Example 2:
50,000 (0249F0h):

0 1 2 3 4 5 6 7

yte set t o in e t e va s flo

AC is set to 1
AC=150000

Byte
Hex value F0 49 02 0 41 43 0 0

Example 3:
d and the DLC is 4:

0 1 2 3

AC is querie
AC

Byte
Hex value 41 43 0 0

Example 4:
yte 3, bit 6” note). This is the same query as in Example 3, but with a DLC of 8 (“B

AC

Byte 0 1 2 3 4 5 6 7
Hex value 41 43 0 40 0 0 0 0

In both Example 3 and Example 4, the reply from the server is:

Byte 0 1 2 3 4 5 6 7
Hex value 41 43 0 0 F0 49 02 0

Example 5:
CA[18] = 4096 (1000h) (18 in decimal - 12h in hex)

Byte 0 1 2 3 4 5 6 7
Hex value 43 41 12 0 0 0 10 0

CANopen DS 301 Implementation Guide Binary Interpreter Commands
MAN-CAN301IG (Ver. 1.7)

40

Example 6:
In this example, the server replies to the comma ET[99 (3E0h ssum that the

21 (7D79h) is is e to q y the C 8 format (bit 6 in byte 3 is set):
ET[992] (3E0h)

nd 2]), a ing
value is 321 . Th don uer DL

Byte 0 1 2 3 4 5 6 7
Hex value 45 54 E0 43 0 0 0 0

The server replies as follows:
e 0 1 2 3 4 5 6 7 Byt

Hex value 45 54 E0 03 79 7D 0 0

9.1

erver (d e) replie PDO2) query and set requests in eight bytes (DLC=8):

ytes 0 to the h , whi lud res nding mmand command
h eded a t ege als ndicate

response

 Bytes 4 to 7 are data, which is either a reflection of the host Set command or an error
ommand.

0 2 4 - 7

.1.1 TPDO2 Structure

The s riv s (T to

 B 3 are eader ch inc es the po co ,
index (w en ne

data is true
) and dat
 data or an

ype (float or int
 error code.

r). It o i s whether the

code according to the EC c

Byte 1 3
Bits 0…7 0…7 0…7 0…5 6 7
Description First Second Index for array

scalar command

See 0:

1: Float

Valid data or
ode. Little

endian format.
character character parameter. 0 for note. Integer error c

The server replies as follows:
Byte 0 1 2 3 4 5 6 7
Hex value 45 54 E0 03 79 7D 0 0

 Bytes 0 and 1 represent the command character and must be uppercase.

6:

s.

Byte 3, bit
When this byte is 1 for TPDO, the data in bytes 4 to 7 should be interpreted as an error
code. Refer to the EC command section in the SimplIQ Command Reference Manual for
detail

 In array commands in which the index is used (as in ET[100]), the lowest significant
e most significant bits are in byte 3.

1 2 3 4 5 6 7

bits are in byte 2 (bits 0 to 7) and th

Example:
The server replies to the command CA[1]=4, which is out of range: error code 21 (15h).

Byte 0
Hex value 43 42 02 40 21 0 0 0

CANopen DS 301 Implementation Guide Binary Interpreter Commands
MAN-CAN301IG (Ver. 1.7)

41

9.1.2 Ex ute omm nd

an are u to in uct th rive to perform a sequence. The reply to these
ommands is only an acknowledgement or an error code; there is no value for executing

and. Exe ute commands are a unique case of RPDO2, which can be used with a
of either r 8.

ec C a

These comm ds sed str e d
c
comm c
DLC 4 o

Example:
BG command, to start a motion.

DLC4:
Byte

0

3 1 2

Hex value 42 47 0 0

DL8:
Byte 0 1 2 7
Hex value 42 47 0 0

The reply is always eight bytes long and indicates either success or failure (error).

 Success
Byte 0 1 2 3 4 5 6 7
Hex value 0 0 0 42 47 0 0 0

Failure: error code 58 (3Ah) for “Motor must be on”

0 1 2 3 4 5 6 7 Byte
Hex value 4 A 2 47 0 40 3 0 0 0

9.2 ASCII Interpreter Commands not Supported
by

ble using the binary interpreter. In most
s, these stri ing the OS inter

t instead of SDO

 Binary Interpreter

Commands that deal with strings are not accessi
case ngs may be accessed us preter prompt.

Command Description Alternative

VR Detailed software version string. Use OS promp
to read object 0x100a.

CD CPU dump in case of fatal exception. Use OS prompt.

LS/DL List/download from serial flash. Use OS prompt.

DF Download firmware version. Use SDO to write object 0x2090.

BH Bring recorded value. Use SDO to read object 0x2030.

XC##\XQ## Execute user program. Use OS prompt.

Figure 9-1: Some of Commands not Available to Binary Interpreter

The binary interpreter cannot handle expressions, which must be dealt with using the OS
interpreter.

CANopen DS 301 Implementation Guide Binary Interpreter Commands
MAN-CAN301IG (Ver. 1.7)

42

Chapter 10: The OS Interpreter

The OS interpreter is used to process any SimplIQ interpreter string command, and to
return the string results. The only limitation in its use is that the returned strings cannot
exceed 500 characters in length, a limit that must be considered when uploading recorded
data. A more efficient — and unlimited — method to upload recorder data is to use
object 0x2030.

To issue an OS interpreter command

1. Set OS mode to evaluate the string immediately, by writing 0 to object 0x1024.

2. Write the command string to object 0x1023, sub-index 1.

The command execution can be resolved by an event-driven PDO (object 0x2F20) or by
polling object 0x1023, sub-index 2. The polling may return:

 0xFF: Command still executing (can be aborted by writing 3 to object 0x1024).

 0x1: Command successfully executed. Result is waiting for read.

 0x3: Command rejected. Error code waiting for read.

When the response is ready, it can be read from object 0x1023, sub-index 3.

Example:
The following describes the use of the OS interpreter to send the command PX=1234.

Client initiates OS Evaluate Immediately mode:
RSDO Object 0x1024

23 24 10 00 00 00 00 00

Server replies:
TSDO Object 0x1024

60 24 10 00 00 00 00 00

Client initiates segmented SDO download:
RSDO Object 0x1023 Sub-index

21 23 10 01 00 00 00 00

Server replies:
TSDO Object 0x1023 Sub-index

60 23 10 01 00 00 00 00

Client sends PX=1234 in one SDO:
RSDO P X = 1 2 3 4

01 50 58 3D 31 32 33 34

CANopen DS 301 Implementation Guide The OS Prompt Interpreter
MAN-CAN301IG (Ver. 1.7)

43

Server acknowledges that the RSDO was received OK:
TSDO

20 00 00 00 00 00 00 00

Client gets PX value from OS interpreter (assuming OS was already defined as “Evaluate
Immediately”:
RSDO Object 0x1023 Sub 1 P X

23 23 10 01 50 58 00 00

Server acknowledges that the RSD0 was received OK:
TSDO Object 0x1023

60 23 10 01 00 00 00 00

Client queries status of command:
RSDO Object 0x1023 Sub-index

40 23 10 02 00 00 00 00

Server replies that command was executed and that the result is waiting:
TSDO Object 0x1023 Sub-index Execute OK

42 23 10 02 01 00 00 00

Client queries for reply value:
RSDO Object 0x1023 Sub-index

42 23 10 03 00 00 00 00

Server replies with value of valid PX:
TSDO Object 0x1023 Sub-index 1 2 3 4

43 23 10 03 31 32 33 34

CANopen DS 301 Implementation Guide The OS Prompt Interpreter
MAN-CAN301IG (Ver. 1.7)

44

Chapter 11: The EDS

The Electronic Data Sheet (EDS) assists CANopen configuration personnel in
determining which objects a CAN slave supports. The EDS has a standard format that is
explained in CiA DS 301, version 4. This document defines an optional read-only object
used to upload the EDS directly from the CAN slave.

 Object 0x1021 is the EDS, stored as an ASCII string – future implementation

 Object 0x1022 defines the EDS compression style, which must be 0, for No
compression - future implementation

The EDS is loaded to the internal serial flash memory of the SimplIQ digital servo drive as
part of the firmware download process – future implementation

CANopen DS 301 Implementation Guide The EDS
MAN-CAN301IG (Ver. 1.7)

45

Chapter 12: Communication Profile

1000h: Device type
1001h: Error register
1002h: Manufacturer status register
1003h: Predefined error field
1005h: COB-ID SYNC message
1008h: Manufacturer device name
1009h: Manufacturer hardware version
100Ah: Manufacturer software version
100Bh: Node ID
1012h: COB-ID time stamp
1013h: High-resolution time stamp
1014h: COB-ID emergency object
1017h: Producer heartbeat time
1018h: Identity object
1021h: Store EDS (not implemented)
1022h: EDS storage format (not implemented)
1023h: OS command and prompt
1024h: OS command mode
1029h: Error behavior
1200h: SDO server parameter
1400h - 1403h: Receive PDO communication parameter
1600h - 1603h: Receive PDO mapping
1800h - 1803h: Transmit PDO communication parameter
1A00h - 1A03: Transmit PDO mapping

Object 0x1000: Device type
This object contains information about the device type and functionality. It is comprised
of a 16-bit field that describes the device profile used, and a second 16-bit field that gives
additional information about optional functionality of the device.
MSB LSB
Byte 4 Byte 3 Byte 2 Byte 1

Additional information Device profile number

 Object description:

Index 1000h

Name Device type

Object code VAR

Data type UNSIGNED32

Category Mandatory

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

46

 Entry description:

Access Read only

PDO mapping No

Value range UNSIGNED32

Default value 0x191

Object 0x1001: Error register
This object is an error register for the device.

 Object description:

Index 1001h

Name Error register

Object code VAR

Data type UNSIGNED8

Category Mandatory

 Entry description:

Access Read only

PDO mapping No

Value range UNSIGNED8

Default value 0

 Data description (M for Mandatory and O for Optional):

Bit M/O Meaning

0 M Generic error

1 O Current

2 O Voltage

3 O Temperature

4 O Communication error (overrun, error state)

5 O Device profile specific

6 O Reserved (always 0)

7 O Manufacturer specific

If a bit is set to 1, the specified error has occurred. The only mandatory error that
must be signaled is the generic error, which is signaled in any error situation.

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

47

Object 0x1002: Manufacturer status register
This object is a common status register for manufacturer-specific purposes. It returns the
status similar to the SR command.

 Object description:

Index 1002h

Name Manufacturer status register

Object code VAR

Data type UNSIGNED32

Category Optional

 Entry description:

Access Read only

PDO mapping Yes

Value range UNSIGNED32

Default value

Object 0x1003: Pre-defined error field
This object holds the errors that have occurred in the device and have been signaled via
the Emergency object. In doing so, it provides an error history. The entry at sub-index 0
contains the number of actual errors recorded in the array, starting at sub-index 1. It can
read 0 if no error is registered, or 1 if an error is registered. The present version of SimplIQ
digital servo drives store one error at the most.

Writing a 0 to sub-index 0 empties the array. Values higher than 0 are not allowed, in
order to prevent an Abort message (error code: 0609 0030h).

The error numbers are of type Unsigned32 and are composed of a 16-bit error code, an
8-bit error register and an 8-bit additional error information field, which is manufacturer-
specific. The error code is contained in the lower two bytes (LSB) and the additional
information is included in the upper two bytes (MSB). The pre-defined error field has the
following structure:

MSB LSB
Bits 24…31 Bits 16…23 Bits 0…15
Manufacturer-specific
error code

Error register Error code

For error code and error register values, see object 0x2F21.

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

48

 Object description:

Index 1003h

Name Pre-defined error history

Object code ARRAY

Data type UNSIGNED32

Category Mandatory

 Entry description:

Sub-index 0

Description Number of actual errors

Entry category Mandatory

Access Read/Write

PDO mapping No

Value range UNSIGNED8

Default value 0

Sub-index 1

Description Standard error field

Entry category Mandatory

Access Read only

PDO mapping No

Value range UNSIGNED32

Default value 0

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

49

Object 0x1005: COB-ID SYNC message
This object defines the COB-ID of the synchronization object (SYNC). It also defines
whether or not the device generates the SYNC. The structure of the object is as follows:
MSB LSB
Bits 31 30 29 28 - 11 10 - 0

11-bit ID X 0/1 0 000000000000000000 11-bit identifier

 Description of SYNC COB-ID entry:

Bit Number Value Meaning
31 (MSB) X Do not care
30 0

1
Device does not generate SYNC message
Device generates SYNC message

29 0
1

11-bit ID (CAN 2.0A)
29-bit ID (CAN 2.0B)

28 - 11 0
X

If bit 29 = 0
If bit 29 = 1: bits 28 - 11 of 29-bit SYNC COB-ID

10 - 0 (LSB) X Bits 10 - 0 of SYNC COB-ID

Bits 29 and 30 are static (unchangeable). Any attempt to modify this object will result
in an Abort message. Object description:

Index 1005h

Name COB-ID SYNC

Object code VAR

Data type UNSIGNED32

Category Mandatory

 Entry description:

Access Read only

PDO mapping No

Value range UNSIGNED32

Default value 0x80

 According to CiA DSP 301, the 0x1005 object has read/write access, although it
only has read access with SimplIQ digital servo drives .

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

50

Object 0x1008: Manufacturer device name
This object contains the manufacturer device name, such as “Harmonica”.

 Object description:

Index 1008h

Name Manufacturer device name

Object code VAR

Data type VISIBLE STRING

Category Optional

 Entry description:

Access Read only

PDO mapping No

Value range

Default value

Object 0x1009: Manufacturer hardware version
This object contains the version number of the manufacturer’s hardware. The WS[30]
command contains the hardware version as a 32-bit unsigned integer, while this object
conveys the information as a hexadecimal number. For example, if WS[30] is equal to
0x1FF6B, the string returned by this object will be 0x1FF6B.

 Object description:

Index 1009h

Name Manufacturer hardware
version

Object code VAR

Data type VISIBLE STRING

Category Optional

 Entry description:

Access Read only

PDO mapping No

Value range

Default value No

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

51

Object 0x100A: Manufacturer software version
This object contains the version identification of the manufacturer’s software.

 Object description:

Index 100Ah

Name Manufacturer software version

Object code VAR

Data type VISIBLE STRING

Category Optional

 Entry description:

Access Read only

PDO mapping No

Value range No

Default value No

Object 0x100B: Node ID
This object contains the node ID of the drive. If the node ID is changed, the object will
return the updated value only after Reset Communication and Start Communication
NMT messages have been sent.

 Object description:

Index 100Bh

Name Node ID

Object code VAR

Data type UNSIGNED8

Category Optional

 Entry description:

Access Read only

PDO mapping No

Value range 1…127

Default value No

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

52

Object 0x1010: Save parameters
This object is used to save parameters in non-volatile memory. Through read access, the
drive provides information about its save capabilities, using:

 Sub-index 0: Largest supported sub-index

 Sub-index 1: Save all parameters

In order to avoid accidental storage, storage is only executed when a specific signature —
“save” — is written to the appropriate sub-index.

MSB LSB
“e” “v” “a” “s”

65H 76H 61H 73H

 Object description:

Index 1010h

Name Store parameters

Object code RECORD

Data type UNSIGNED32

Category Optional

 Entry description:

Sub-index 0

Description Largest supported sub-index

Entry category Mandatory

Access Read only

PDO mapping No

Value range UNSIGNED8

Default value 1

Sub-index 1

Description Save all parameters

Entry category Mandatory

Access Read/Write

PDO mapping No

Value range UNSIGNED32

Default value No

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

53

Object 0x1011: Restore parameters
This object is used to restore parameters from non-volatile memory. Through read access,
the drive provides information about its restore capabilities, using:

 Sub-index 0: Largest supported sub-index

 Sub-index 1: Restore all parameters

In order to avoid accidental storage, restore is only executed when a specific signature —
“load” — is written to the appropriate sub-index.

MSB LSB
“d” “a” “o” “l”

64H 61H 6FH 6CH

 Object description:

Index 1011h

Name Restore parameters

Object code RECORD

Data type UNSIGNED32

Category Optional

 Entry description:

Sub-index 0

Description Largest supported sub-index

Entry category Mandatory

Access Read only

PDO mapping No

Value range UNSIGNED8

Default value 1

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

54

Object 0x1012: COB-ID time stamp
This object defines the COB-ID of the Time Stamp object (TIME). It also indicates whether
the devices consumes or generates the TIME. The structure of the object is as follows:
MSB LSB
Bits 31 30 29 28 - 11 10 - 0

11-bit ID 0/1 0/1 0 000000000000000000 11-bit identifier

29-bit ID 0/1 0/1 1 29-bit identifier

 Description of COB-ID time stamp entry:

Bit Number Value Meaning
31 (MSB) 0

1
Devices does not consume TIME message
Device consumes TIME message

30 0
1

Device does not produce TIME message
Device produces TIME message

29 0
1

11-bit ID (CAN 2.0A)
29-bit ID (CAN 2.0B)

28 - 11 0
X

If bit 29 = 0
If bit 29 = 1: bits 28 - 11 of 29-bit TIME COB-ID

10 - 0 (LSB) X Bits 10 - 0 of TIME COB-ID

Bits 29 and 30 are static (unchangeable). The value of this object cannot be modified.
Writing the default COB-ID of the time stamp will not cause an abort code.

Object description:

Index 1012h

Name COB-ID time stamp message

Object code VAR

Data type UNSIGNED32

Category Optional

 Entry description:

Access Read/Write

PDO mapping No

Value range UNSIGNED32

Default value 100h

 According to CiA DSP 301, the 0x1012 object has read/write access, although it
only has read access with SimplIQ digital servo drives.

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

55

Object 0x1013: High-resolution time stamp
This object contains a time stamp with a 1-microsecond resolution.

 Object description:

Index 1013h

Name High resolution time stamp

Object code VAR

Data type UNSIGNED32

Category Optional

 Entry description:

Access Read/Write

PDO mapping No

Value range 0…0xFFFFFFFF

Default value 0

Object 0x1014: COB-ID emergency object
This object defines the COB-ID of the Emergency object (EMCY). The structure of the
object is as follows:
MSB LSB
Bits 31 30 29 28 - 11 10 - 0

11-bit ID 0/1 0 0 000000000000000000 11-bit identifier

29-bit ID 0/1 0 1 29-bit identifier

 Description of EMCY COB-ID entry:

Bit Number Value Meaning
31 (MSB) 0

1
EMCY exists / is valid
EMCY does not exist / is invalid

30 0 Reserved (always 0)

29 0
1

11-bit ID (CAN 2.0A)
29-bit ID (CAN 2.0B)

28 - 11 0
X

If bit 29 = 0
If bit 29 = 1: bits 28 - 11 of 29-bit EMCY COB-ID

10 - 0 (LSB) X Bits 10 - 0 of EMCY COB-ID

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

56

 Object description:

Index 1014h

Name COB-ID emergency message

Object code VAR

Data type UNSIGNED32

Category Mandatory

 Entry description:

Access Read only

PDO mapping No

Value range 0x81…0xFFFFFFFF

Default value 0x81

Object 0x1016: Consumer heartbeat time
The consumer heartbeat time defines the expected heartbeat cycle time and thus has to be
higher than the corresponding producer heartbeat time configured on the device
producing this heartbeat. Monitoring starts after the reception of the first heartbeat. If the
consumer heartbeat time is 0 the corresponding entry is not used. The time has to be a
multiple of 1ms.

UNSIGNED32
MSB

LSB

Bits 31…24 23…16 15…0

Value 0 Node-ID Heartbeat time, in milliseconds
Encoding - Unsigned8 Unsigned16

At an attempt to configure several consumer heartbeat times unequal 0 for the same
Node-ID the device aborts the SDO download with abort code 0604 0043h.

 Object description:

Index 1016h

Name Consumer heartbeat time

Object code ARRAY

Data type UNSIGNED32

Category Optional

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

57

 Entry description:

Sub-index 0

Description Largest supported sub-index

Entry category Optional

Access Read only

PDO mapping No

Value range 1

Default value 1

Sub-index 1

Description Consumer heartbeat time

Entry category Optional

Access Read/Write

PDO mapping No

Value range UNSIGNED32

Default value No

Object 0x1017: Producer heartbeat time
This object defines the cycle time of the heartbeat, which must be a multiple of
1 millisecond. It is 0 if not used.

 Object description:

Index 1017h

Name Producer heartbeat time

Object code VAR

Data type UNSIGNED16

Category Mandatory

 Entry description:

Access Read/Write

PDO mapping No

Value range UNSIGNED16

Default value 0

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

58

Object 0x1018: Identity object
This object stores the LSS address used for the CAN ID and baud rate setting.

 Object description:

Index 1018h

Name Identity object

Object code RECORD

Data type UNSIGNED32

Category Mandatory

 Entry description:

Sub-index 0

Description Number of entries

Entry category Optional

Access Read only

PDO mapping No

Value range UNSIGNED8

Default value No

Sub-index 1

Description Vendor ID

Entry category Mandatory

Access Read only

PDO mapping No

Value range UNSIGNED32

Default value No

Sub-index 2

Description Product code

Entry category Mandatory

Access Read only

PDO mapping No

Value range UNSIGNED32

Default value No

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

59

Sub-index 3

Description Revision number

Entry category Mandatory

Access Read only

PDO mapping No

Value range UNSIGNED32

Default value No

Sub-index 4

Description Serial number

Entry category Mandatory

Access Read only

PDO mapping No

Value range UNSIGNED32

Default value No

Note:

For the sub index 3 - Revision number, Elmo implement the follows protocol:

Major Field (16 bits) Minor Field (16 bits)

1 (0x0001) 1000 (0x03E8)

Example for revision number 0x103E8

Major field, when modified it indicates a big modification with compatibility issues.

Minor field, when modified compatibility remains. The thousands entry means that a big
change was performed (such as a new protocol). The hundreds, tens & single number
indicate minor changes such as engineering version or internal modification.

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

60

Object 0x1023: OS command and prompt
This object is used with the OS interpreter (see Chapter 10).

 Object description:

Index 1023h

Name OS command

Object code RECORD

Data type Command Par

Category Optional

 Entry description:

Sub-index 0

Description Number of entries

Entry category Optional

Access Read only

PDO mapping No

Value range UNSIGNED8

Default value No

Sub-index 1

Description Command

Entry category Optional

Access Write only

PDO mapping No

Value range String octet

Default value None

Sub-index 2

Description Status:
0: Last command completed, no errors, no
reply
1: Last command completed, reply ready
3: Last command rejected, reply ready
255: Executing

Entry category Optional

Access Read only

PDO mapping No

Value range UNSIGNED8

Default value 0

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

61

Sub-index 3

Description Reply

Entry category Optional

Access Read only

PDO mapping No

Value range String octet

Default value None

Object 0x1024: OS command mode
This object is used with the OS interpreter (see Chapter 10).

 Object description:

Index 1024h

Name OS command mode

Object code VAR

Data type UNSIGNED8

Category Optional

 Entry description:

Access Write only

PDO mapping No

Value range UNSIGNED8:
0: Execute next command immediately
1 - 2: Not supported
3: Abort execution

Default value No

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

62

Object 0x1029: Error behavior
This object reports the CAN communication state after a heartbeat failure. The value of
the object asserts that after such a failure, the CAN communication state is:
0: Pre-operational (only if current state is operational)
1: No state change
2: Stopped

The default value is 1 (no state change).

 Object description:

Index 1029h

Name Error behavior

Object code ARRAY

Data type UNSIGNED8

Category Optional

 Entry description:

Sub-index 0

Description Number of error classes

Entry category Mandatory

Access Read only

PDO mapping No

Value range 1 to 0xFE

Default value 1

Sub-index 1

Description Communication error

Entry category Mandatory

Access Read/Write

PDO mapping No

Value range UNSIGNED8

Default value 1

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

63

Object 0x1200: SDO server parameter
This object is used to describe the SDO used on a device. The data type has the index 22h
in the object dictionary. The number of supported entries in the SDO object record is
specified by sub-index 0h. The values at 1h and 2h specify the COB-ID for this SDO.
Sub-index 3 gives the server of the SDO if the record describes an SDO for which the
device is a client, and it gives the client of the SDO if the record describes an SDO for
which the device is the server. The structure of the SDO COB-ID entry is as follows:

MSB LSB
Bits 31 30 29 28 - 11 10 - 0

11-bit ID 0/1 0 0 000000000000000000 11-bit identifier

29-bit ID 0/1 0 1 29-bit identifier

 Description of SDO COB-ID entry:

Bit Number Value Meaning
31 (MSB) 0

1
SDO exists / is valid
SDO does not exist / is invalid

30 0 Reserved (always 0)

29 0
1

11-bit ID (CAN 2.0A)
29-bit ID (CAN 2.0B)

28 - 11 0
X

If bit 29 = 0
If bit 29 = 1: bits 28 - 11 of 29-bit SDO COB-ID

10 - 0 (LSB) X Bits 10 - 0 of SDO COB-ID

An SDO is valid only if both SDO valid bits are 0. These objects contain the parameters
for which the SDO is the server. This entry is read only.2 COB-IDs cannot be changed.

 Object description:

Index 1200h

Name Servo SDO 1 Parameter

Object code RECORD

Data type SDO Parameter (object 0x22)

Category Optional

2 Ensure that the COB-IDs of the default SDO cannot be manipulated by writing to the OD.

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

64

 Entry description:

Sub-index 0

Description Number of entries

Entry category Optional

Access Read only

PDO mapping No

Value range 2

Default value 2

Sub-index 1

Description COB-ID client → server (Rx)

Entry category Optional

Access Read only

PDO mapping No

Value range 0x601…0x67F

Default value 0x601

Sub-index 2

Description COB-ID client → server (Tx)

Entry category Optional

Access Read only

PDO mapping No

Value range 0x581…0x5FF

Default value 0x581

Objects 0x1400 - 0x1403: Receive PDO communication parameter

 Object description:

Index 1400h - 1403h

Name Receive PDO Parameter

Object code RECORD

Data type PDO CommPar (object 0x20)

Category Conditional: mandatory for each supported PDO

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

65

 Entry description:

Sub-index 0

Description Number of entries

Entry category Optional

Access Read only

PDO mapping No

Value range UNSIGNED8

Default value 2

Sub-index 1

Description COB-ID used by PDO

Entry category Optional

Access Read only

PDO mapping No

Value range UNSIGNED32

Default value Index 1400h: 0x27F
Index 1401h: 0x37F
Index 1402h: 0x47F
Index 1403h: 0x57F

Sub-index 2

Description Transmission type

Entry category Optional

Access Read only

PDO mapping No

Value range UNSIGNED8

Default value 255

 Notes:

 Transmission type may be 255, 254 or 1. On an attempt to change the value of
the transmission type to a value that is not supported by the Elmo drive an abort
message (abort code: 0609 0030h) is generated.

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

66

Objects 0x1600 - 0x1603: Receive PDO mapping
These objects contain the mapping for the PDOs that the Elmo drive is able to receive.
The sub-index 0h contains the number of valid entries within the mapping record. This
number of entries is also the number of the application variables that are received with
the corresponding PDO.

 Mapping method: (for more information please refer to the “PDO mapping” section
in this manual.
The sub-indices from 1h to number of entries contain the information about the
mapped application variables. These entries describe the PDO contents by their
index, sub-index and length. All three values are hexadecimal coded.

The PDO mapping element is a 32-bit field (object 0x21), divided as follows:
MSB LSB

Index: 16-bit Sub index: 8-bit Object length: 8 bits

The length of the entry contains the length of the object in bits (1..40h).

If the change in PDO mapping cannot be executed (for example, the PDO length is
exceeded or the SDO client attempts to map an object that cannot be mapped), the
device responds with an Abort SDO Transfer Service.

Sub-index 0 determines the valid number of objects that have been mapped. For
changing the PDO mapping, sub-index 0 must be set to 0 (mapping is deactivated).
On then can the objects be remapped.

When a new object is mapped by writing a sub-index between 1 and 8, if the object
does not exist or it cannot be mapped, the SDO transfer is aborted with the Abort
SDO Transfer Service with abort code 0602 0000h or 0604 0041h. You can configure a
single object without remapping the remaining objects. The previously mapped
objects will not be cleared.

After all objects are mapped, sub-index 0 is set to the valid number of mapped
objects. Then the drive rechecks the mapping integrity. Finally, the PDO is created by
writing to its communication parameter COB-ID. When sub-index 0 is set to a value
greater than 0, the device may validate the new PDO mapping before transmitting the
response of the SDO service. If an error is detected, the Elmo drive transmits the
Abort SDO Transfer Service with abort codes 0602 0000h, 0604 0041h or 0604 0042h.

When sub-index 0 is read, the actual number of valid mapped objects is returned.

 Object description:

Index 1600h - 1603h

Name Receive PDO Mapping

Object code RECORD

Data type PDO Mapping

Category Conditional: mandatory for each supported PDO

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

67

 Entry description:

Sub-index 0

Description Number of mapped application object in PDO

Entry category Optional

Access Read/Write

PDO mapping No

Value range UNSIGNED32

Default value 1

Sub-index 1

Description PDO mapping for first and last application object to
be mapped

Entry category Optional

Access Read/Write

PDO mapping No

Value range UNSIGNED32

Default value Object 1600h(1): 0x20010040 (controlword)
Object 1601h(1): 0x20120040 (binary interpreter)
Object 1602h: 0
Object 1603h: 0

Default value 0x581

 Notes:
 Up to 8 objects can be mapped to a single RPDO.
 Dummy entries are not supported by the Elmo drive.
 The object can be mapped during the PRE OPERATIONAL stage.

Dynamic mapping is allowed during the OPERATIONAL stage. The SDO client
is responsible for data consistency.

Objects 0x1800 - 0x1803: Transmit PDO communication parameter

Object description:

Index 1800h - 1803h

Name Transmit PDO parameter

Object code RECORD

Data type PDO CommPar (object 0x20)

Category Conditional: mandatory for each supported
PDO

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

68

 Entry description:

Sub-index 0

Description Number of entries

Entry category Optional

Access Read only

PDO mapping No

Value range UNSIGNED8

Default value No

Sub-index 1

Description COB-ID used by PDO

Entry category Optional

Access

ct 1803h: Read/Write

Object 1800h: Read/Write
Object 1801h: Read/Write
Object 1802h: Read/Write
Obje

PDO mapping No

Value range UNSIGNED32

Default value

Index 1803h: 0x400004FF

Index 1800h: 0x400001FF
Index 1801h: 0x400002FF
Index 1802h: 0x400003FF

Sub-index 2

Description Transmission type

Entry category Optional

Access

ct 1803h: Read/Write

Object 1800h: Read/Write
Object 1801h: Read/Write
Object 1802h: Read/Write
Obje

PDO mapping No

Value range 0…240

Default value 0

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

69

Sub-index 3

Description Inhibit time

Entry category Optional

Access Read/Write

PDO mapping No

Value range UNSIGNED16

Default value 0 (no inhibit time between messages)

Sub-index 4

Description Reserved

Entry category

Access

PDO mapping

Value range

Default value

 COB ID used by PDO
Only the default COB and specific Node ID can be written to the drive. An attempt to
write another COB ID will result in an abort (Abort Code 0609 0030h).

 Event time:
When a TPDO transmission type is 254 or 255, an event time can be used. The event
occurs when the time is elapsed. The event time elapse is a multiple of 1 millisecond
of sub-index 5. It causes the transmission of this PDO in addition to other
asynchronous events. The occurrence of an event sets the timer again. A value of 0
disables this function. The transmission of the TPDO has an accuracy with 2
milliseconds.

 Inhibit time:
Inhibit time specifications do not relate to the generating event but to the
transmission of the TPDO. The inhibit time resolution is 100 microseconds. The exact
inhibit times are not very accurate and can actually be up to 2 milliseconds (20 units
of inhibit time) longer than defined by sub-index 3 of this object. For example, if an
inhibit time is specified as 10 milliseconds, its actual inhibit time length may vary in
the range of [10…12] milliseconds. Inhibit time restrictions are explained in section
2.4.

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

70

Objects 0x1A00 - 0x1A03: Transmit PDO mapping
These objects contain the mapping for the PDOs that the Elmo drive is able to transmit.
Sub-index 0h contains the number of valid entries within the mapping record. This
number of entries is also the number of the application variables that are transmitted
with the corresponding PDO.

For more information about the PDO mapping method, refer to objects 0x1600 - 0x1603.

 Object description:

Index 1A00h - 1A03h

Name Transmit PDO mapping

Object code RECORD

Data type PDO Mapping (object 0x21)

Category Conditional: mandatory for each supported PDO

 Entry description:

Sub-index 0

Description Number of mapped application objects in PDO

Entry category Optional

Access Read only

PDO mapping No

Value range UNSIGNED8

Default value 0

Sub-index 1 - 8

Description PDO mapping for nth application object to be mapped

Entry category Optional

Access Object 1A00h: Read/Write
Object 1A01h: Read/Write
Object 1A02h: Read/Write
Object 1A03h: Read/Write

PDO mapping No

Value range UNSIGNED32

 Notes:
 Up to eight objects can be mapped to a single TPDO.
 Dummy entries are not supported by the Elmo drive.
 The object can be mapped during PRE OPERATIONAL stage.

Dynamic mapping is allowed during the OPERATIONAL stage. The SDO client is
responsible for data consistency.

CANopen DS 301 Implementation Guide Device-specific Objects
MAN-CAN301IG (Ver. 1.7)

71

Chapter 13: Manufacturer-specific Objects

2001h: PVT data
2002h: PT data
2004h: ECAM data
2012h: Binary interpreter input
2013h: Binary interpreter output
2030h: Recorder data
2040h: Coordinate system group ID
2041h: Amplifier-free running timer
2082h: CAN controller status
208Ah: Begin time
2090h: Firmware download
20A0h: Auxiliary position actual value
20A1h: Main position error
2200h: Digital input
2201h: Digital input low byte
2F00h: User Integer
2F01h: User Float Array
2F01h: ET Array
2F11h: PVT head pointer
2F12h: PVT tail pointer
2F15h: Profile position remaining points
2F20h: PDO events
2F21h: Emergency events
2F22h: Bus off timeout
2F23h: Digital input TPDO event parameters
2F30h: Last time stamp correction
2F31h: Last SYNC time
2F40h: Configuration object

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

72

Object 0x2001: PVT data
This object sets PVT data for the PVT motion mode.

 Object description:

Index 2001h

Name PVT data

Object code VAR

Data type PVT DataPar (object 0x40)

Category Optional

 Entry description:

Access Write only

PDO mapping Yes

Value range No

Default value No

 Notes:
The transmission type for mapping this object must be 255; otherwise, an Abort
message (code 0604 0043h) will be transmitted.

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

When this object is used to feed PVT reference points to the drive while a PVT
motion is executing, the drive automatically enters Online Feed mode, in which
the drive is aware of the position written and takes the following precautions:

If the feed is too slow, the drive needs to fetch points not yet programmed,
and the motion will abort with a “Queue underflow” emergency.

If the feed is too fast, so that points not yet used are overstruck, the drive will
reject the feed attempt with a “Queue overflow” emergency.

The Online Feed mode will continue until at least one setting of PVT parameters
has been completed without using the RPDO.

73

Object 0x2002: PT data
This object sets PT data for the PT motion mode.

 Object description:

Index 2002h

Name PT data

Object code VAR

Data type PT DataPar (object 0x41)

Category Optional

 Entry description:

Access Write only

PDO mapping Yes

Value range No

Default value No

 Notes:
 The transmission type for mapping this object must be 255; otherwise, an Abort

message (code 0604 0043h) will be transmitted.

 When this object is used to feed PT reference points to the drive while a PT
motion is executing, the drive automatically enters Online Feed mode, in which
the drive is aware of the position written and takes the following precautions:

 If the feed is too slow, the drive needs to fetch points not yet programmed,
and the motion will abort with a “Queue underflow” emergency.

 If the feed is too fast, so that points not yet used are overstruck, the drive will
reject the feed attempt with a “Queue overflow” emergency.

 The Online Feed mode will continue until at least one setting of PT parameters
has been completed without using the RPDO.

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

74

Object 0x2004: ECAM data
This object sets ECAM data for the ECAM table entries.

 Object description:

Index 2004h

Name ECAM data

Object code VAR

Data type PT DataPar (object 0x41)

Category Optional

 Entry description:

Access Write only

PDO mapping Yes

Value range No

Default value No

 Notes:
The transmission type for mapping this object must be 255; otherwise, an Abort
message (code 0604 0043h) will be transmitted.

When this object is used to feed ECAM reference points to the drive, a working
table with a border cannot be used. (Refer to the SimplIQ Software Reference
Manual for more information.)

Object 0x2012: Binary interpreter input
This object is a binary interpreter object (refer to Chapter 9 concerning the byte stream).

Object description:

Index 2012h

Name Binary interpreter

Object code VAR

Data type Binary interpreter query (object 0x42)

Category Mandatory

 Entry description:

Access Read only

PDO mapping Yes

Value range No

Default value No

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

75

Object 0x2013: Binary interpreter output
This object is a binary interpreter object (refer to Chapter 9 concerning the byte stream).

 Object description:

Index 2013h

Name Binary interpreter

Object code RECORD

Data type Binary interpreter command (object 0x43)

Category Mandatory

 Entry description:

Access Write only

PDO mapping Yes

Value range No

Default value No

Object 0x2030: Recorder data
This object is used to retrieve recorder parameters according to RC and the sub-index
field. The 0x1 sub-index fetches the parameter, recorded in RC = (1 << sub-index).

 Object description:

Index 2030h

Name Bring recorded data

Object code RECORD

Data type UNSIGNED32

Category Optional

 Entry description:

Sub-index 0

Description Number of supported elements

Entry category Mandatory

Access Read only

PDO mapping No

Value range UNSIGNED8

Default value 16

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

76

Sub-index 1

Description Main speed

Entry category Mandatory

Access Read only

PDO mapping No

Value range Refer to Table 13-1

Default value

Sub-index 2

Description Main position

Entry category Mandatory

Access Read only

PDO mapping No

Value range Refer to Table 13-1

Default value

Sub-index 3

Description Position command

Entry category Mandatory

Access Read only

PDO mapping No

Value range Refer to Table 13-1

Default value

Sub-index 4

Description Digital input

Entry category Mandatory

Access Read only

PDO mapping No

Value range Refer to Table 13-1

Default value

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

77

Sub-index 5

Description Position error for UM=4, UM=5

Entry category Mandatory

Access Read only

PDO mapping No

Value range Refer to Table 13-1

Default value

Sub-index 6

Description Torque command

Entry category Mandatory

Access Read only

PDO mapping No

Value range Refer to Table 13-1

Default value

Sub-index 7

Description Bus voltage

Entry category Mandatory

Access Read only

PDO mapping No

Value range Refer to Table 13-1

Default value

Sub-index 8

Description Auxiliary position

Entry category Mandatory

Access Read only

PDO mapping No

Value range Refer to Table 13-1

Default value

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

78

Sub-index 9

Description Auxiliary speed

Entry category Mandatory

Access Read only

PDO mapping No

Value range Refer to Table 13-1

Default value

Sub-index 0A

Description Active current

Entry category Mandatory

Access Read only

PDO mapping No

Value range Refer to Table 13-1

Default value

Sub-index 0B

Description Reactive current

Entry category Mandatory

Access Read only

PDO mapping No

Value range Refer to Table 13-1

Default value

Sub-index 0C

Description Analog input 1

Entry category Mandatory

Access Read only

PDO mapping No

Value range Refer to Table 13-1

Default value

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

79

Sub-index 0D

Description Reserved

Entry category

Access

PDO mapping

Value range

Default value

Sub-index 0E

Description Current phase A (IA value)

Entry category Mandatory

Access Read only

PDO mapping No

Value range Refer to Table 13-1.

Default value

Sub-index 0F

Description Current phase B (IB value)

Entry category Mandatory

Access Read only

PDO mapping No

Value range Refer to Table 13-1.

Default value

Sub-index 10

Description Speed command

Entry category Mandatory

Access Read only

PDO mapping No

Value range Refer to Table 13-1.

Default value

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

80

Sub-index 0E

Description Current phase A (1A value)

Entry category Mandatory

Access Read only

PDO mapping No

Value range Refer to Table 13-1.

Default value

 The bring data upload process:
The SDO Upload protocol is initiated as outlined in CiA DS 301. After confirmation, a
character stream is transmitted. Each octet must be answered according to the Upload
SDO segmented protocol, except sub-index 0, which returns object-supported entries
in expedited SDO format.

The segmented response is built from the header and data stream.

 The sub-index in this object is a value of the RC bit field.

The header byte sequence is as follows:

Byte
Number

Description

Value

Type

0 - 1 Variable type for user.
Field has no practical
significance.

0: Integer system parameter
1: Real system parameter
2: Integer user program
variable
3: Real user program variable

Byte

2 - 3 Data width: number of hex
character of single transmitted
data item.

4: Short integer
8: Long integer

Byte

4 - 7 Data length: actual number of
transmitted data items.

 Word

Table 13-1: Upload SDO Header Byte

The rest of the byte sequence is the data stream. All bytes are transferred according to
the scheme explained in section 2.9. Sub-index 0 uploads the supported object entries.

 If the recorder variables are changed during upload, the process will be aborted.

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

81

Object 0x2040: Coordinate system group ID
A 7-bit identifier is used for multicasting messages to a set of servo drives. For example, a
network consists of three drives with CAN IDs 1, 2 and 3, and drives 1 and 2 are assigned
a group ID of 4. A CAN master message to slave ID 4 will be received by drives 1 and 2.
Drive 1 will respond with ID 1 and drive 2 will respond with ID 2.

The group ID of a drive may equal its ID. In order to set the group ID, first set object
0x2040, then send the command Reset Communication NMT service, followed by the
Start Remote NMT service. The group ID becomes effective only at the next CAN
network reset (NMT 82h).

 Object description:

Index 2040h

Name ID for synchronized commands

Object code VAR

Data type UNSIGNED8

Category

 Entry description:

Access Read/Write

PDO mapping No

Value range No

Default value 128

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

82

Object 0x2041: Amplifier-free running timer
This object transmits the accurate 32-bit timer of the drive. The timer has a 1-microsecond
resolution that is updated once in a real-time cycle. The accuracy of the report is
1 microsecond and the resolution is real time.

This object is typically used when the host wants to synchronize records for several slave
nodes. It returns the precise time when the synchronous PDO data has been sampled
(refer to Chapter 8).

 Object description:

Index 2041h

Name Drive free-running timer

Object code VAR

Data type UNSIGNED32

Category

 Entry description:

Access Read only

PDO mapping Yes

Value range No

Default value No

Object 0x2082: CAN controller status
This object provides the status of the CAN controller status register.

 Object description:

Index 2082h

Name CAN controller status

Object code VAR

Data type UNSIGNED32

Category Optional

 Entry description:

Access Read only

PDO mapping No

Value range No

Default value No

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

83

 Byte stream:
The 32-bit number has the following structure:

Bits 31…24 23…16 15…8 7…0

Description Network status CAN transmit
error counter

CAN receive
error counter

CAN receiver
flag

Bits 0 to 7 of the CAN receiver flag are as follows:

Bit Meaning Remarks

0 Not used

1 Overrun flag, set when data overrun
occurs

1: Data overrun detected
0: No data overrun

2 Bus off flag 1: CAN in bus off state
0: No bus off state

3 Transmitter error passive flag, set when
CAN enters error passive state due to
transmit error counter exceeding 127,
and bus off flag is clear

1: CAN in transmitter error
passive state
0: No transmitter error passive
state

4 Receiver error passive flag, set when
CAN enters error passive state due to
receive error counter exceeding 127,
and bus off flag is clear

1: CAN in receiver error passive
state
0: No receiver error passive state

5 Transmitter warning flag 1: CAN in transmitter warning
state
0: No transmitter warning

6 Receiver warning flag 1: CAN in receiver warning state
0: No receiver warning state

7 Not used

Table 13-2: CAN Receiver Flag Bit 0…7

The CAN receive error counter (bits 8…15) reflects the status of the CAN receive
error counter. The CAN transmit error counter (bits 16…23) reflects the status of the
CAN transmit error counter.

The network status (bits 24…31) may be one of the following values:
1: Disconnected
2: Connected
3: Preparing
4: Stopped
5: Operational
127: Pre-operational

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

84

Object 0x208A: Begin time
This object receives an absolute time for a simultaneous Motion Begin (BG). The time
resolution for this object is 1 microsecond. For more information, refer to the BT
command section in the SimplIQ Command Reference Manual and to Chapter 8 of this
manual.

 Object description:

Index 208Ah

Name Begin time

Object code VAR

Data type UNSIGNED32

Category Optional

 Entry description:

Access Read/Write

PDO mapping No

Value range No

Default value No

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

85

Object 0x2090: Firmware download
This object is used to download controller firmware using S-record format.

 Object description:

Index 2090h

Name Download firmware

Object code DOMAIN

Data type Visible String

Category Optional

 Entry description:

Access Write only

PDO mapping No

Value range No

Default value No

After the final character of each S-record line, the host must send the character 0x0A to
indicate end-of-line. The next S-record can be sent immediately after 0xA.

Example:
First, the host initiates an SDO segmented sequence:

Byte 0 Byte 4 Byte 7
20 0x90 0x20 0x00 0x00 0x00 0x00 0x00

After the reply from the drive, the host transmits:

Byte 0 Byte 4 Byte 7
00 “S” “3” “6” “A” “3” “9” “1”

The end-of-line format and the beginning of a new S-record line:

Byte 0 Byte 4 Byte 7
10 “8” “5” 0x0A “S” “6” “0” “B”

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

86

Object 0x20A0: Auxiliary position actual value
This object returns the actual position of the auxiliary axis (PY).

 Object description:

Index 20A0h

Name Auxiliary position

Object code VAR

Data type SIGNED32

Category Optional

 Entry description:

Access Read only

PDO mapping Yes

Value range -109…109

Default value No

Object 0x20A1: Main position error
This object returns the error between the position command and the actual position (PE).

 Object description:

Index 20A1h

Name Position error

Object code VAR

Data type SIGNED32

Category Optional

 Entry description:

Access Read only

PDO mapping No

Value range -109…109

Default value No

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

87

Object 0x2200: Digital input
This object reports an active or non-active state of a digital input. It reflects the value of
the IP command. The function and the logic level of a digital input are associated with
the IL command.

When this object is mapped to a TPDO and the transmission type is set to asynchronous
event, it is transmitted on every change of an input.

The report value of object 0x2200 is similar to the IP command. Please refer to the SimplIQ
Command reference manual.

 Object description:

Index 2200h

Name Digital inputs

Object code VAR

Data type UNSIGNED32

Category Optional

 Entry description:

Access Read only

PDO mapping Yes

Value range 0…0xFFFFFFFF

Default value No

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

88

Object 0x2201: Digital input low byte
This object defines simple digital inputs for drives.

The reflected functions are:

o Negative limit switch – Similar to RLS

o Positive limit switch – Similar to FLS

o Home switch – As reflected in the IL[5] command

 Object description:

Index 2201h

Name Digital inputs low byte

Object code VAR

Data type UNSIGNED8

Category Optional

 Entry description:

Access Read only

PDO mapping Yes

Value range 0…0xFF

Default value 0

 Data description:

7 4 3 2 1 0

Reserved Interlock Home
switch

Positive
limit switch

Negative
limit switch

MSB
The switch must be “active high.”

 Notes:
 The interlock is always 0.

 “Active high” means that the bit is set to high when the switch is logically active.

 Different SimplIQ drives support a different number of digital inputs. It is
advised to use only the relevant bits according to the specific drive.

 This object is evaluated every 3 milliseconds.

When mapped as asynchronous, this object is transmitted at every change within the
calculation resolution period. Inhibit time can be used to prevent busload or to control
the time latency causing the same TPDO to be transmitted due to other asynchronous
events.

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

89

Object 0x2F00: User Integer

This object provides an array of 24 integer numbers for general-purpose use.

 Object description:

Index 2F00h

Name User Integer

Object code ARRAY

Data type Integer32

Category Optional

 Entry description:

Sub-index 0

Description Number of entries

Entry category Optional

Access Read only

PDO mapping No

Value range 24

Default value 24

Sub-index 1-24

Description User Array

Entry category Optional

Access Read/write

PDO mapping Yes

Value range [(–230 +1)…(230 –1)]

Default value 0

Object 0x2F01: User Float Array
This object provides an array of 24 floating numbers for general-purpose use.

 Object description:

Index 2F01h

Name User Float Array

Object code ARRAY

Data type Floating Point (Float)

Category Optional

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

90

 Entry description:

Sub-index 0

Description Number of entries

Entry category Optional

Access Read

PDO mapping No

Value range 24

Default value 24

Sub-index 1-24

Description User Array

Entry category Optional

Access Read/write

PDO mapping Yes

Value range [-1e20…1e20]

Default value 0

Object 0x2F02: ET Array
This object enables ECAM table variables (ET[1] to ET[255]) to be loaded.

 Object description:

Index 2F02h

Name ET Array

Object code ARRAY

Data type Integer 32

Category Optional

 Entry description:

Sub-index 0

Description Number of entries

Entry category Optional

Access Read

PDO mapping No

Value range 255

Default value 255

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

91

Sub-index 1-255

Description User Array

Entry category Optional

Access Read/write

PDO mapping Yes

Value range

Default value 0

Object 0x2F11: PVT head pointer
This object informs the host of the index location of the last updated PVT message in the
PVT table. According to this information, and with object 0x2F12, the host can determine
the rate and location at which the PVT table should be updated. This object can only be
used when mapped into a synchronized TPDO. It cannot be read or written with an SDO
protocol.

 Object description:

Index 2F11h

Name PVT head pointer

Object code VAR

Data type UNSIGNED16

Category

 Entry description:

Access Read only

PDO mapping Yes

Value range No

Default value No

Object 0x2F12: PVT tail pointer
This object informs the host of the index of the next read PVT message in the PVT table.
According to this, and object 0x2F11, the host can determine the rate and location at
which the PVT table should be updated. This object can only be used when mapped into
a synchronized TPDO. It cannot be read or written with an SDO protocol.

 Object description:

Index 2F12h

Name PVT tail pointer

Object code VAR

Data type UNSIGNED32

Category

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

92

 Entry description:

Access Read only

PDO mapping Yes

Value range No

Default value No

Object 0x2F15: Profile position remaining points
This object indicates the number of points remaining for the profile movement in DSP 402
Profile Position mode, when working in Elmo’s manufacture-specific buffer mode.

 Object description:

Index 2F15h

Name Profile position remaining points

Object code VAR

Data type UNSIGNED16

Category

 Entry description:

Access Read only

PDO mapping Yes

Value range 0…32

Default value 0

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

93

Object 0x2F20: PDO events
This object is used to select the events that cause asynchronous PDOs to be transmitted,
with transmission type 254. PDOs with other transmission types are ignored. Sub-indices
1 to 4 define events for transmitting TPDO1, TPDO2, TPDO3 and TPDO4, respectively.

The event definition for the PDO transmission is a bit field, as follows:

Bit Event

0 Motion complete: MS = 0

1 Main homing complete: HM[1] = 0

2 Auxiliary homing complete: HY[1] = 0

3 Motor shut down by exception: MO = 0

4 Motor started: MO = 1

5 User program “emit” command

6 OS interpreter execution complete

7 Digital input event according to object 0x2F23

8…30 Reserved

31 Binary interpreter command processing complete

Asynchronous TPDOs obey the inhibit time restrictions, as explained in section . 2.4

 Object description:

Index 2F20h

Name PDO events

Object code ARRAY

Data type UNSIGNED32

Category Optional

 Entry description:

Sub-index 0

Description Number of sub-indices

Entry category Mandatory

Access Read only

PDO mapping No

Value range 4

Default value 4

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

94

Sub-index 1

Description Events for PDO1 trigger

Entry category Optional

Access Read/Write

PDO mapping No

Value range 0…0x4FFFFFFF

Default value 0

Sub-index 2

Description Events for PDO2 trigger

Entry category Optional

Access Read only

PDO mapping No

Value range

Default value 0x80000000

Sub-index 3

Description Events for PDO3 trigger

Entry category Optional

Access Read/Write

PDO mapping No

Value range 0…0x4FFFFFFF

Default value 0

Sub-index 4

Description Events for PDO4 trigger

Entry category Optional

Access Read/Write

PDO mapping No

Value range 0…0x4FFFFFFF

Default value 0

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

95

Object 0x2F21: Emergency events
This object selects events as the cause for transmitting emergency objects (see Chapter 6).

The driving event definition for an emergency is a bit field, as follows:

Bit Event Error Code Error Register

0 CAN message lost (corrupted or overrun) 0x8110 0x11

1 Protocol error (unrecognized NMT request) 0x8200 0x11

2 Attempt to access an unconfigured RPDO 0x8210 0x21

3 Heartbeat event 0x8130 0x11

4 Fatal CPU error: stack overflow 0x6180 0x81

5 User program aborted by an error 0x6200 0x81

6 Request by user program “emit” function 0xFF01 0x81

7 Motor shut down by fault See Table 13-3 See Table 13-3

8 Object mapped to an RPDO returned an
error during interpretation or a referenced
motion failed to be performed.

0x6300 0x01

9 DS 402 IP Underflow 0xFF02 0x21

 This object does not control certain emergency messages, such as PVT motion
errors. Some of the uncontrolled emergency objects include manufacturer-specific
information.

The manufacturer error field for all controlled emergency messages is zero, except the
user program EMCY() command, in which the program code determines the value of the
field. The argument of the EMCY() function is written as an Unsigned32 number, into
bytes 4 to 7 of the emergency message.

 Notes:

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

A “CAN message lost” emergency may indicate an overrun, in which a CAN
message has not been retrieved from the receiver on time. The next message to
the same buffer crashes with the as-yet unread message. Both messages may be
lost in the crash. There may also be more lost messages that go undetected,
because they may have be sent while the message loss indication was on. The
“CAN message lost” message tells where a crash occurred, but it does not tell
how many messages have actually been lost. The emergency message includes
some information about the type of the “lost message” where it can. Data Field 2
in the EMCY objects contains information about the lost message. When the
value is –1, the overrun occurred in the CAN controller hardware buffer. When
the overrun is a software buffer overrun, data field 2 contains the COB-ID of the
last message received and which caused the overrun.

96

 In case of a failed RPDO, the emergency message with data field 1 and data
field 2 includes the following information:

0 0x00
1

Error code
0x63

2 Error register 0x01
3 EC value Elmo error code, if 0 either

no error or no related error
for this emergency

If > 0, error is according to
the EC command

4
5

Error code data field 1 Object index

6 Object sub-index
7

Error code data field 2
Interpreter error code, similar values as EC
command.

 If the profile is executed by the DSP 402 protocol, byte 3 of the Elmo error code is
set to 0xff. The object index and sub-index are according to the failed profile:
0x607A: profile position
0x60FF: profile velocity

Motor Fault Description

Resolver or Analog Encoder feedback failed

Motor Fault
Value (MF
Command)

1

Error
Code

0x7300

Error
Register

0x81

Reserved 1 0x7305 0x21

Reserved 2 0x7306 0x21

Feedback loss: no match between encoder and
Hall locations. Available in encoder + Hall
feedback systems

4 0x7380 0x81

Peak current has been exceeded due to:

 Drive malfunction

Badly-tuned current controller

8 0x8311 0x21

Disabled by Limit switch 0x10 0x5441 0x21

Reserved 0x20 0x5280 0x81

Two digital Hall sensors changed at once; only
one sensor can be changed at a time.

0x40 0x7381 0x81

Speed tracking error DV[2]-VX (for UM=2, 4 or 5)
ue to:

0x80 0x8480
exceeded speed error limit ER[2], d
 Bad tuning of speed controller
 Too tight a speed-error tolerance

Inability of motor to accelerate to required
speed because line voltage is too low, or

0x81

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

97

Motor Fault Description

Motor Fault
Value (MF
Command)

Error
Code

Error
Register

motor is not powerful enough

Position tracking error DV[3]-PX (UM5) or
DV[3]-PY (UM=4) exceeded position error limit

 Bad tuning of position or speed controller

 otor load, a mechanical limit

0x100 0x8611 0x21

ER[3], due to:

 Too tight a position error tolerance
Abnormal m
reached

Cannot start due to inconsistent database. Thi
type of database inconsistency is reflected in

s

0x200 0x6320 0x21

status SR report and in CD CPU dump report.

Too large a difference in ECAM table entries. 0x400 0x5280 0x81

Heartbeat failure, occurring only if drive is set to
“Abort under heartbeat failure” in a CANopen
network (object 0x6007

 in CAN object dictionary

0x800 0x8130 0x11

set to 1, malfunction).

Cannot find electrical zero of motor when
attempting to start motor with an incremental
encoder and no digital Hall sensors. Applied
motor current m

ay not suffice for moving motor

0x10000 0x8380 0x81

from its place.

Speed limit exceeded: VX < LL[2] or VX > HL[2] 0x20000 0x8481 0x81

Stack overflow: fatal exception. May occur if CPU
cannot handle a

 real-time load due to too low a

0x40000 0x6180 0x81

sampling time.

CPU exception: fatal exception. 0x81 0x8000 0x6181

Timing Error 0x100000 0x5281 0x81

Motor stuck: motor powered but not moving 0x200000 0x7121 0x21
according to definition of CL[2] and CL[3].

Position limit exceeded: PX < LL[3] or PX > HL[3]
(UM=5), or PY < LL[3] or PY > HL[3] (UM=4).

0x400000 0x8680 0x81

Reserved 0x8000000 0x1000 0x81

Cannot tune current offsets 0x81

rt motor 0x20000000

0x10000000 0x8381

Cannot sta 0xFF10 0x81

Reserved 0x800000 0x8680 0x81

Reserved 0x1000000 0x3

000

0x8312

Cannot start motor 0x20000 0x5400 0x21

Under-voltage: power supply is shut down or it 0x3000 0x3120 0x5
has too high an output impedance.

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

98

Motor Fault Description

Motor Fault
Value (MF
Command)

Error
Code

Error
Register

ing a load. A shunt resistor may be

0x5000 0x3310 0x5 Over-voltage: power-supply voltage is too high
or servo drive could not absorb kinetic energy
while brak
required.

Reserved 0x7000 0x3100 0x5

Reserved 0x9000 0x2311 0x3

Short circuit: motor or its wiring may be 0xb000 0x2340 0x3
defective, or drive is faulty.

Temperature: drive overheating. The
environment is too hot or heat removal is not
efficient. Could be due to large thermal resistance

rive and its mounting.

0xd000 0x4310 0x9

between d

Reserved 0xf000 0x5282 0x81

Table 13-3: Motor Shut Down by Fault Emergency Error Codes

llow AN emergencies are supported in PVT/PT m des:

 c)

0x56 86

 below the value stated in
Field 2: Read pointer

The fo

Error
Code

ing C

Error
Code

o

(Hex) (De Reason

Queue is low. Number of yet
unexecuted PVT table rows has
dropped

Data Field

Field 1: Write pointer

MP[4].

0x5b 91
may be

].

Value of MP[6] Write pointer is out of physical range
([1…64]) of PVT table. Reason
an improper setting of MP[6

0x5c 92 PDO 0x3xx is not mapped.

0x34 52
T points than are available in

le
d not be

rogrammed

An attempt has been made to program
more PV
queue.

Field 1: Index of PVT tab
entry that coul
p

0x7 7

specified by the start and end

 Cannot initialize motion due to bad
setup data. The write pointer is outside
the range
pointers.

0x8 8 en
automatically stopped (in MO=1).

rite pointer

tory in non-

Mode terminated and motor has be Data field 1: W

Data field 2:
1: End of trajec
cyclical mode
2: A zero or negative time

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

99

Error
Code
(Hex)

Error
Code
(Dec)

Reason

Data Field

ointer reached write
ointer

specified for a motion interval
3: Read p
p

0x9 9 A CAN message has been lost.

Table 13-4: PVT CAN Emergency Messages

 Setting a new value for object 0x2F21 deletes all emergency events queued for
transmission.

 Object description:

Index 2F21h

Name Emergency events

Object code VAR

Data type UNSIGNED16

Category

 Entry description:

/Write Access Read

PDO mapping No

Value range No

Default value 0xFF (all emergencies on)

Object 0x2F22: Bus off time out
This object defines the bus off timeout in milliseconds. If the device enters bus off, it w
attempt to renew CAN communication after the specified time elapses. If the device
recovers the CAN communication, the drive will enter pre-operational state; otherwise,
will remain disconnected. If the value of the object

ill

it
is set to zero, the timeout is infinite;

8 occurrences of 11 consecutive recessive bits (logical 1) have been
monitored on the bus.

that is, the device never recovers from the bus off.

A node goes into bus off state when more than 255 errors have been counted by the
transmitter error counter. If this state, the node cannot participate in the bus activities. A
node in bus off state can become “error active” (no longer in bus off state) with its error
counter set to 0 after 12

 When object 0x2F22 is 0, the node can never leave bus off state.

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

100

 Object description:

Index 2F22h

Name Bus-off time out

Object code VAR

Data type UNSIGNED16

Category

 Entry description:

Access Read/Write

PDO mapping No

Value range 0…65,535

Default value 500

Object 0x2F23: Digital input TPDO event parameters
When a TPDO is driven by a “digital input event” (DIN event) according to object
0x2F20, this object defines which digital input transitions will activate the TPDO.

Logic digital inputs (logic DINs) are physical or simulated input in values. The polarity
for physical inputs is set according to the IL[N] command and to the debouncer
according to the IF[N] command. The logic DINs are sampled each real-time cycle. The
decisions about an event and its transmission are made in the background.

The following table lists the values used to define the digital input transitions:

DIN Mask Value DIN Logic Level for Activating an Event

0 No event occurs.

1 Switched from low to high (↑).

2 Switched from high to low (↓).

3 Switched (↑ or ↓).

When a DIN event occurs, the mapped TPDO is transmitted. The DIN mask value is
determined according to a 2-bit field of the digital input.

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

101

Example:
The value 0x00A1 sets the DIN4 event to “Event on every switch” and the DIN1 event to
“Switch from low active to high active.” every other digital input switch does not
produce an event:

DIN6 DIN5 DIN4 DIN3 DIN2 DIN1
0 0 0 0 1 1 0 0 0 0 0 1

TPDOs are transmitted only when the following steps are performed:

1. An object is mapped to the relevant TPDO and the transmission type is set to 254.

2. The logic level of the relevant digital input is adjusted (IL[N] command).

3. The event parameter of the input is determined by object 0x2F23.

4. The “digital input event” bit is set in object 0x20F0.

From this point on, as soon as the event occurs, the requested TPDO is transmitted.

 Notes:

 If several inputs are selected, a DIN event will occur when at least one of the
selected digital inputs is switched.

 A DIN event occurs according to switch level, regardless of the function selected
for that switch (details given in the IL[N] and IP command sections of the
SimplIQ Command Reference Manual).

 Object description:

Index 2F23h

Name Digital input TPDO event parameters

Object code VAR

Data type UNSIGNED16

Category

 Entry description:

Access Read/Write

PDO mapping No

Value range 0x0FFF

Default value 0x0FFF (event on every switch)

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

102

Object 0x2F30: Last time stamp correction
This object reads the difference between the last Sync time and the last Time Stamp. It
serves to estimate how accurately the internal drive clock is locked onto the master clock.

 Object description:

Index 2F30h

Name Last time stamp correction

Object code VAR

Data type UNSIGNED32

Category

 Entry description:

Access Read only

PDO mapping No

Value range No

Default value No

Object 0x2F31: Last SYNC time
This object is used with the internal microsecond counter of the drive, sampled at the last
SYNC. It is useful when one drive is used to synchronize the entire network. To use this
object for synchronization:

1. Broadcast a SYNC (object 80H).

2. Read this object from one drive (can be mapped to a TPDO).

3. Transmit the accepted value in a Time Stamp object (object 100H).

 Object description:

Index 2F31h

Name Last SYNC time

Object code VAR

Data type UNSIGNED32

Category

 Entry description:

Access Read only

PDO mapping No

Value range No

Default value 0

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

103

Object 0x2F40: Configuration object
This bit field object gives several configuration options to the drive. It resets to 0 after
boot reset and must be set again in such cases

 Object description:

Index 2F40h

Name Configuration object

Object code VAR

Data type UNSIGNED32

Category

 Entry description:

Access Read/Write

PDO mapping No

Value range No

Default value No

 Data description:

Bit 31 1 0

 Reserved T Stamp master

 T Stamp master:
The node is defined as a Time Stamp master. The drive’s internal 32-bit, 1-
microsecond resolution global timer is used as the system time stamp. The drive does
not response to Time Stamp messages (COB-ID 0x100 or object 0x1013). In order to
prevent motor jumps, setting this bit is allowed when the motor is off (MO=0).

CANopen DS 301 Implementation Guide Manufacturer-specific Objects
MAN-CAN301IG (Ver. 1.7)

104

Chapter 14: Error Control Protocol

A heartbeat is a single-byte message, with the following options:

For node guarding and life guarding, SimplIQ digital servo drives implement the
heartbeat mechanism, as defined by CiA DS 301, version 4.0. With this process, a CAN
slave can monitor other devices to determine if they are active, according to their
periodic heartbeat messages. The CAN slave can send heartbeats to consumers, which
may want to monitor if this slave is active.

Heartbeats are sent from the moment of initialization, even if the slave state is stopped.
Object 0x1016 is a list of heartbeats that must be accepted from external devices. Failure
to accept an expected heartbeat leads to behavior described by object 0x1029 and object
0x6007. Non-acceptance of a consumer heartbeat message at the expected time is called a
“heartbeat event,” which creates an emergency only if the relevant bit of EMCY is set to 1
(see object 0x2F21). A single emergency object may be transmitted per one heartbeat
event. The heartbeat event is reset by one of the following events:

 A new heartbeat message arrives from the producer.

 The heartbeat consumer time object (0x1016) is written.

SimplIQ digital servo drives use a minimal implementation of object 0x1016. The sole
heartbeat that it monitors is that of the network master. Object 0x1017 sets the period for
sending heartbeats.

Heartbeat Description

0 Boot-up

4 Stopped

5 Operational

127 Pre-operational

The COB-ID for a heartbeat message is 0x700 + Device ID. For example, a first servo drive
with the unit ID of 1 will have heartbeat COB-ID of 0x701 = 1793.

CANopen DS 301 Implementation Guide Error Control Protocol
MAN-CAN301IG (Ver. 1.7)

105

Chapter 15: Downloading Firmware

New firmware versions can be loaded via CAN communications by writing the new
firmware as S-records to object 0x2090. The S-records are written as string SDOs to object
0x2090.

After the firmware is downloaded, the drive continues to communicate using the
previous firmware. If the download fails, a retry is possible.

CANopen DS 301 Implementation Guide Downloading Firmware
MAN-CAN301IG (Ver. 1.7)

106

Chapter 16: Initial CAN Communication
Setup

16.1 Setup Using RS-232

All communication parameters — such as the CAN baud rate for the targets — are
programmed via the PP[N] command. In order to program the communication
parameters, communication must first be established with the servo drive, so that the
RS-232 communication channel, which is always active, can be used. In cases where the
servo drive is programmed to RS-232 parameters that differ form the default, the servo
drive can be forced to its default RS-232 communication parameters, as outlined in the
SimplIQ Software Manual. It is also possible to try all the supported CAN baud rates until
the unit responds.

The following parameters affect CAN communication:

Parameter Description Range

Servo drive CAN ID PP[13] 1…127

PP[14] CAN baud rate 1…8

8: 800,000
7: 50,000
6: 50,000
5: 50,000
4: 100,000
3: 125,000
2: 250,000
1: 500,000
0: 1,000,000

PP[15] CAN group ID 1…127

PP[16] Standard/extended arbitration field Must be zero (only standard
arbitration presently supported)

Table 16-1: CAN Communication Parameters

Setting the PP[13] and PP[14] parameters does not result in immediately changes. In
order to activate the new communication parameters, an NMT reset communication
command must be sent, or the servo drive must be rebooted.

If the servo drive is to be rebooted, either by the NMT command or by a power-on
sequence, the SV (save parameters) command must be used so that the communication
parameters become permanent.

In order to start CAN PDO communication, an NMT network start command must be
issued. Afterwards, the servo drive is in CAN operational state.

CANopen DS 301 Implementation Guide Initial CAN Communication Setup
MAN-CAN301IG (Ver. 1.7)

107

16.2 Bootup Protocol

This protocol is used to signal that an NMT salve has entered the pre-operational node
state after the initializing state. The protocol uses the same identifier as the error control
protocols.

One data byte is transmitted with value 0.

0

0 1
COB-ID = 1792 + Node-ID NMT SlaveNMT Master

indication

indication

Heartbeat
Consumer(s)

0

0 1
COB-ID = 1792 + Node-ID NMT SlaveNMT Master

indication

indication

Heartbeat
Consumer(s)

CANopen DS 301 Implementation Guide Appendix: Little and Big Endians
MAN-CAN301IG (Ver. 1.7)

108

Appendix: Little and Big Endians

Memory structure: big endians (starts with MSB):
00 08
12 34 56 78 - lType
12 34 56 78 - sType
AB CD 0 - cType

The CAN octet will be as follows:
CD AB 12 AB 56 34 12 1F

CANopen DS 301 Implementation Guide Appendix: Little and Big Endians
MAN-CAN301IG (Ver. 1.7)

The “end” in “endians” refers to the address of the most significant or least significant
byte in a multiple-byte data type (such as short, long or float). The address of big endians
is the most significant byte (the “big” end) while the address of little endians is the least
significant byte (the “little” end).

Example using standard C conventions:
long lType;
short sType[2]
char cType[5] = “ABCD”;

lType = 0x12345678;
sType[1] = 0x1234 ;
sType[2] = 0x5678 ;

Memory structure: little endians (starts with LSB):
00 08
78 56 34 12 - lType
34 12 78 56 - sType
AB CD 0 - cType

The CANopen protocol supports the little endian method; for example, a node replies to
a TPDO with three objects:
Object 1: Signed24 - 0x12ABCD
Object 2: Unsigned32 - 0x123456AB
Object 3: Unsigned8 - 0x1F

109

	Revision History
	Introduction
	Relevant Documentation
	Elmo Documentation
	CAN Documentation

	Abbreviations and Terms
	SimplIQ Communication

	CANopen Basics
	Physical Layer
	Standard vs. Extended Addressing
	Client - Server Relations
	Inhibit Times
	RTR – Remote Transmission Request
	Object Dictionary
	Communication Objects
	Object Dictionary - Data Types
	Representation of Numbers

	The Object Dictionary
	Service Data Objects (SDOs)
	Initiate SDO Download Protocol
	Download SDO Protocol
	Initiate SDO Upload Protocol
	Upload SDO Segment Protocol
	Abort SDO Transfer Protocol
	Uploading Data Using an SDO
	Downloading Data Using an SDO
	Error Correction

	Process Data Objects (PDOs)
	Receive PDOs
	Transmit PDOs
	PDO Mapping
	The Mapping Trigger – Transmission Type
	The Synchronous Trigger
	The Asynchronous Trigger
	RPDO Error Handling
	Mapping Parameter Objects
	Default Values

	Emergency (EMCY)
	Emergency Configuration
	Emergency Codes Related to Failure
	Emergency Codes for Motor Faults
	Emergency Codes Related to PVT/PT Motion

	Network Management (NMT)
	SYNC and Time Stamp
	Binary Interpreter Commands
	Binary Interpreter Commands and Results
	Set and Query Commands
	RPDO2 Structure
	TPDO2 Structure

	Execute Command

	ASCII Interpreter Commands not Supported�by Binary Interpret

	The OS Interpreter
	The EDS
	Communication Profile
	Object 0x1000: Device type
	Object 0x1001: Error register
	Object 0x1002: Manufacturer status register
	Object 0x1003: Pre-defined error field
	Object 0x1005: COB-ID SYNC message
	Object 0x1008: Manufacturer device name
	Object 0x1009: Manufacturer hardware version
	Object 0x100A: Manufacturer software version
	Object 0x100B: Node ID
	Object 0x1010: Save parameters
	Object 0x1011: Restore parameters
	Object 0x1012: COB-ID time stamp
	Object 0x1013: High-resolution time stamp
	Object 0x1014: COB-ID emergency object
	Object 0x1016: Consumer heartbeat time
	Object 0x1017: Producer heartbeat time
	Object 0x1018: Identity object
	Note:
	Object 0x1023: OS command and prompt
	Object 0x1024: OS command mode
	Object 0x1029: Error behavior
	Object 0x1200: SDO server parameter
	Objects 0x1400 - 0x1403: Receive PDO communication parameter
	Objects 0x1600 - 0x1603: Receive PDO mapping
	Objects 0x1800 - 0x1803: Transmit PDO communication paramete
	Objects 0x1A00 - 0x1A03: Transmit PDO mapping

	Manufacturer-specific Objects
	Object 0x2001: PVT data
	Object 0x2002: PT data
	Object 0x2004: ECAM data
	Object 0x2012: Binary interpreter input
	Object 0x2013: Binary interpreter output
	Object 0x2030: Recorder data
	Object 0x2040: Coordinate system group ID
	Object 0x2041: Amplifier-free running timer
	Object 0x2082: CAN controller status
	Object 0x208A: Begin time
	Object 0x2090: Firmware download
	Object 0x20A0: Auxiliary position actual value
	Object 0x20A1: Main position error
	Object 0x2200: Digital input
	Object 0x2201: Digital input low byte
	Object 0x2F00: User Integer
	Object 0x2F01: User Float Array
	Object 0x2F02: ET Array
	Object 0x2F11: PVT head pointer
	Object 0x2F12: PVT tail pointer
	Object 0x2F15: Profile position remaining points
	Object 0x2F20: PDO events
	Object 0x2F21: Emergency events
	Object 0x2F22: Bus off time out
	Object 0x2F23: Digital input TPDO event parameters
	Object 0x2F30: Last time stamp correction
	Object 0x2F31: Last SYNC time
	Object 0x2F40: Configuration object

	Error Control Protocol
	Downloading Firmware
	Initial CAN Communication Setup
	Setup Using RS-232
	Bootup Protocol

