
Bachelor Thesis

Comparative Query Suggestion

Hauke Heller

Studiengang Informatik

Matr.-Nr. 6004435

Erstgutachter: Prof. Dr. Chris Biemann

Zweitgutachter: Dr. Alexander Panchenko

Abgabe: 23.07.2019





Inhaltsverzeichnis i

Inhaltsverzeichnis

1 Abstract 1

2 Introduction 3

3 Background 5
3.1 The Comparative Argument Machine (CAM) . . . . . . . . . . . . . . . . . 5

3.2 Query suggestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Term relevance feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4 Dynamic query suggestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 The Initial Experiment 13
4.1 The Comparison Candidate Retrieval (CCR) machine . . . . . . . . . . . . 13

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Integration of CAM with CCR 19
5.1 Comparing word lists for the precomputation of comparison suggestions 21

5.1.1 Dictionary A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.2 Dictionary B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Conclusion and Future Work 27

Literaturverzeichnis 29

Eidesstattliche Versicherung 31



ii Inhaltsverzeichnis



1

1 Abstract

This work aims to provide an overview of different query suggestion approaches and

explains its relevance. By adding a feature that makes comparative suggestions to the

Comparative Argument Machine, it shows how query suggestion may enhance user ex-

perience in practice. To test the usefulness of the comparative suggestions, they are com-

pared with suggestions from the Google Suggest API. In a second approach, suggestions

are tested for usefulness by an annotator.
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2 Introduction

To help users comparing two objects independent from a specific domain, the Comparati-

ve Argument Machine (CAM) was developed in a former project. It enables users making

domain-independent comparative queries with two comparison objects A and B, as well

as zero or more aspects.

As users often have little information about the objects they want to compare, they

might even lack examples of good comparison objects they could compare comparison

object A to.

Abbildung 2.1: Possible approach to gather comparison objects for amazon 1

A possible approach here would be to use the Google Suggest feature of Google Search

by typing «comparison object A» vs in its text field like shown above. Adding a similar

functionality to CAM would be an example of query suggestion. This work will discuss

different aspects of query suggestion and finally, show how CAM is enhanced with a

comparative query suggestion feature.

1https://www.google.com/



4 2 Introduction



5

3 Background

As this work aims to explore query suggestion in the context of the comparative argu-

ment machine (CAM), this chapter will briefly explain CAM and introduce some import-

ant concepts and techniques of query suggestion.

3.1 The Comparative Argument Machine (CAM)

CAM is a system that aims to be able to process domain-independent comparative que-

ries and return a preferred object based on a large collection of text documents"[SBZ+19].

It extracts argumentative textual statements from web resources to answer questions as-

king to compare two objects A and B, optional with respect to zero or more aspects {C}.

Its result contains all sentences that contain A, B taking {C} to account in order of their

usefulness.[SBZ+19]

Abbildung 3.1: CAM frontend 1

1http://ltdemos.informatik.uni-hamburg.de/cam/
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3.2 Query suggestion

"Query suggestion has widely been used in most commercially web search engines which

facilitates the interaction between users and search engines."[SZH11] The query sugge-

stions are offered to search engine users as an additional option next to the results shown

to them from their initial submitted query. Hence, if the user is not satisfied with the

results, they may choose to click on one of the suggested queries to refine the search.

Research works have indicated that query suggestion greatly improves user satisfaction

rate, especially for information queries.[SZH11]

Abbildung 3.2: Google query suggestions for the term seven sisters 2

To present the best query suggestions, Andrew et al. describe a system that makes it

possible to rank query suggestions by employing a machine-learned model of user beha-

vior that outputs an indication of usefulness to generated query suggestions.[APR+11] In

this scenario, it is crucial that the suggested queries offer a good variety of suitable que-

ries. Hao Ma et al. describe a technique for generating alternative queries to Web users to

improve the user search experience. Their method thrives to suggest both semantically

relevant and diverse queries to Web users. Based on Markov random walk and hitting ti-

me analysis on the query-URL bipartite graph, it aims to prevent semantically redundant

queries from receiving a high rank and hence leads to a more diverse result set.[MLK10]

This is backed by Makoto P. Kato et al. who analyzed different kinds of data sets compri-

sing millions of unique queries, query suggestions, and patterns of users. Their analysis

suggested that search engines provide better assistance when rare or single-term queries

2https://www.google.com/
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are input and that they dynamically provide query suggestions according to the sear-

cher’s current state.[KST13]

3.3 Term relevance feedback

Term relevance feedback describes a feature that may be part of an information retrieval

(IR) system. It allows users to mark documents as relevant to their needs and present

them to the IR system which may use this information to retrieve more documents that

are similar to the marked documents. The user may in a second iteration mark relevant

documents, present them to the IR system and so on. [RL03] The major problem with this

approach is that users have difficulties selecting good terms from a list of candidates and

are therefore reluctant to make use of this feature. Query suggestions as discussed in the

previous subsection on the other hand often rely on past queries that are similar to the

user’s current query or might have difficulties determining these similarities. To address

these problems Diane Kelly et al. seek to assist users to formulate and reformulate queries

by combining both approaches by automatically creating query suggestions using term

relevance feedback techniques.[KGB09]

3.4 Dynamic query suggestion

Dynamic query suggestion, also called auto-completion, was initially designed as a pros-

thesis for people with limited abilities to express themselves vocally. Swiffin et al. intro-

duced this when they described their Predictive Adaptive Lexicon (PAL) in 1987, a soft-

ware designed to propose words to entered prefixes to reduce the number of character

inputs necessary to enter any given text. It already gave word predictions that adapted to

users vocabulary by automatically capturing words which were not already in its dictio-

nary. It operates based on a dictionary that can adapt when the user enters words which

are not already in it. Each entry in the dictionary contains statistical data on the usage

of that word. To minimize search time, the dictionary is stored in a tree where every no-

de is the prefix of their subtree. Hence, from any node the set of possible predictions is

contained in its sub-tree.[SAPN87]
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Abbildung 3.3: The Dictionary tree structure [SAPN87]

Similar to this, Mysen et al. describe a technique of dynamic query suggestion based

on a prefix, received from a user device. A query prefix is received from a user device.

A user category is determined based on the user identifier which itself is determined

based on the user device. A node that represents the query prefix is located in a query

graph and descendent child nodes representing queries are located. Each node has one

or more user categories and each user category is associated with user-category specific

frequency measures. The located nodes are ranked base on the associated user-category

specific frequency measure and sent to the user device.[MS11]
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Abbildung 3.4: Dynamic query suggestion tree [MS11]

As this feature assists in query creation and completion, reduces keystrokes and helps

avoid typos, it can be found in a growing number of text boxes.
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Abbildung 3.5: Dynamic query suggestions on google.com for the prefix dyn 3

Abbildung 3.6: Dynamic query suggestions on wikipedia.org for the prefix dyn 4

3https://www.google.com/
4https://en.wikipedia.org/wiki/MainPage
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Abbildung 3.7: Dynamic query suggestions on amazon.com for the prefix dyn 5

5https://www.amazon.com/



12 3 Background



13

4 The Initial Experiment

4.1 The Comparison Candidate Retrieval (CCR) machine

In his master thesis, Matthias Schildwächter already implemented the Comparison Can-

didate Retrieval machine (CCR). It takes a list of comparison objects as input and outputs

comparison candidates for each comparison object. As this work ultimately intends to ex-

tend CAM as a kind of auto-completion feature, CCR was adapted to explore different

strategies of doing so. Its basic functionality is described hereafter:

1. DepCC is searched for sentences that contain the comparison object as well as the

word vs. "DepCC is the largest to date [...] linguistically analyzed corpus in English

[...] from a web-scale crawl"[PRF+17]. The result is saved in in a json object es_json:

1 def retrieve_sentences(comparison_object, vs=’vs’):

2 esHostname = ’http://ltdemos.informatik.uni-hamburg.de/

3 depcc-index/’

4 index = ’depcc’

5 crawlDataRepos = ’/_search?q=’

6 url = esHostname + index + crawlDataRepos

7 + ’text:(\"{}\"%20AND%20\"{}\")&from=0&size=10000’

8 .format(comparison_object, vs)

9 es_json = requests.get(url,

10 auth=HTTPBasicAuth(sys.argv[1], sys.argv[2]))

11 return es_json

As an example, the resulting json (shortened) for the comparison object python:

1 {

2 "took": 251,

3 "timed_out": false,

4 "_shards": {

5 "total": 32,

6 "successful": 32,

7 "skipped": 0,

8 "failed": 0

9 },

10 "hits": {

11 "total": 5106,

12 "max_score": 24.678474,

13 "hits": [{
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14 "_index": "depcc",

15 "_type": "text",

16 "_id": "AdePGGYB6G1JbSfZCWuA",

17 "_score": 24.678474,

18 "_source": {

19 "sentence_hash": 1487222179,

20 "document_id": "http://bugs.python.org/issue9807",

21 "insert_id": "",

22 "text": "# (\"python-debug\" vs \"python\").",

23 "sentence_id": 60

24 }

25 }, {

26 ...

27 }]

28 }

29 }

A list of sentences is populated with the text from each hit in the json object:

1 def extract_sentences(es_json):

2 hits = es_json.json()[’hits’][’hits’]

3 sentences = []

4 for hit in hits:

5 text = hit[’_source’][’text’]

6 sentences.append(text)

7 return sentences

A JSON object is returned and a list is populated with those sentences.

2. Each sentence is searched for the pattern <comparison object> - vs - <noun phrase>

or the other way around. Each unique noun phrase is stored as comparison candi-

date in a dictionary along with and sorted by the number of patterns in which it

occurred.

1 def extract_candidates(comp_obj, sentences):

2 unique_candidates = {}

3 for sentence in sentences:

4 blob = TextBlob(sentence)

5 for candidate in blob.noun_phrases:

6 if candidate not in [comp_obj, ’vs’, ’vs.’]

7 and is_candidate(candidate, comp_obj, sentence):

8 if candidate in unique_candidates:

9 unique_candidates[candidate] += 1

10 else:

11 unique_candidates[candidate] = 1

12 unique_candidates = sorted(unique_candidates.items(),

13 key=operator.itemgetter(1), reverse=True)

14 return unique_candidates
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3. A list of candidates is retrieved from the Google Suggest API in order to compare

them to those retrieved from CCR.

1 def get_suggestions(s):

2 ggl_suggestions = lambda s:get("http://google.com/

3 complete/search?client=gma&q="+s).json()[1]

4 return ggl_suggestions(s)

4.2 Results

For the initial experiment, comparison candidates were calculated by CCR for a list of 30

unique words. In parallel, comparison candidates were queried from the Google Suggest

API for the same words to see how CCR holds up to a widely used tool. The accumulated

calculation time was 6:14 Minutes, that is a mean time of 12.47 seconds for each word.

To classify CCR’s comparison candidates, some statistical measures of performance were

calculated:

• True positives (TP) as the size of the intersection of the comparison candidates from

the Google Suggest API and CCR.

TP = GoogleSuggestions ∩ CCRSuggestions

It describes how many words that were identified by the Google Suggest API as

comparison candidates were also identified as such by CCR.

• Precision as the ration of TP to the amount of all of CCR’s comparison candidates.

Precision =
TP

CCRSuggestions

It puts the TP into perspective, as we want CCR to suggest only comparison candi-

dates that are also comparison candidates of the Google Suggest API.

• Recall as the ratio of TPs to the amount of all of Google’s comparison candidates,

as we want CCR not to miss any of Googles suggestions.

Recall =
TP

GoogleSuggestions

• F1 score as the harmonic average of precision and recall as we want both the TP to

be the size of the comparison candidates of the Google Suggest API and also the

CCR to suggest nothing else.

F1score = 2 ∗ Precision ∗ Recall
Precision + Recall
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Abbildung 4.1: Statistical measures of the performance

Abbildung 4.2: Initial experiment results I

For 16 out of 30 comparison objects, CCR failed to suggest comparison candidates. On

the other hand, taking into account the fairly basic approach of the comparison candida-

tes retrieval, the results are not too bad:
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Mean true positives: 1.0667

Mean false negatives: 16.6

Mean false positives: 10.0

Mean precision: 0.0643

Mean recall: 0.0585

Mean F1 score: 0.0539

In comparison with suggestions from the Google Suggest API, CCR suggested on ave-

rage 1.0667 true positives, with a maximum of 6 for the comparison object truck. Mean

precision is 0.0643, mean recall is 0.0585 and mean F1 score is 0.0539.

It is, of course, debatable whether comparison candidates selected by the Google Sug-

gest API hold up for a kind of gold standard. Comparing CCR’s suggestions to them says

little about their real usefulness.

Abbildung 4.3: Initial experiment results
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5 Integration of CAM with CCR

To demonstrate the benefits of the comparative candidate retrieval machine (CCR), we

enhanced the comparative argument machine (CAM) with CCR’s main functionality.

This feature suggests comparative objects to the user’s entries in the input element ’First

object’. As on the fly computation of suggestions by CCR with the current setup, unfortu-

nately, takes around 8 seconds, we pre-computed suggestions for a dictionary of words.

1 co_suggestions_dict = {}

2
3 def requestSuggestions(comparison_object):

4 ccr_suggestions = requests.get("http://127.0.0.1:5000/ccr/"+ ’{}’

5 .format(comparison_object)).json()

6 data = {

7 "comparison_object": comparison_object,

8 "suggestions": ccr_suggestions

9 }

10 return data

11
12 with open(./comparison_objects_filename) as json_file:

13 comparison_objects = json.load(json_file)

14 co_suggestions_dict = Pool(4).map(requestSuggestions,

15 comparison_objects)

16
17 with open(./outfile.json, ’w’) as outfile:

18 json.dump(co_suggestions_dict, outfile)

From the pre-computed suggestions, an Elasticsearch index was created:

1 es = Elasticsearch(hosts = [{"host" : "localhost", "port" : 9200}],

2 timeout=300)

3
4 request_body = {

5 "settings" : {

6 "number_of_shards": 1,

7 "number_of_replicas": 0

8 }

9 }

10
11 res = es.indices.create(index = "suggestions-index",

12 body = request_body)
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13
14 counter = 0

15 document_name = ’./suggestions/outfile.json’

16 .format(str(’%05d’ % i))

17
18 with open(document_name) as json_file:

19 data = json.load(json_file)

20 for obj in data:

21 es.index(

22 index = "suggestions-index",

23 doc_type = "suggestions",

24 id = counter,

25 body = obj)

26 counter += 1

When using CAM’s frontend, each time the input element ’First object’ loses focus, a

request is made to the Elasticsearch index:

1 requestSuggestions() {

2 this.httpRequestService.getEsSuggestions(

3 this.urlBuilderService.buildEsUrl(),

4 this.object_A).subscribe(

5 data => {

6 this.options = data[’hits’][’hits’][0]

7 [’_source’][’suggestions’];

8 console.log(’Suggestions found: ’ + this.options);

9 }

10 );

11 }

The array of pre-computed suggestions (this.options) is presented to the user as a drop-

down list when they focus the input element ’Second-object’ as shown in the following

examples:
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Abbildung 5.1: Presentation of Suggestions for the word rafting as drop-down list

Abbildung 5.2: Presentation of Suggestions for the word python as drop-down list

Abbildung 5.3: Presentation of Suggestions for the word jaguar as drop-down list

5.1 Comparing word lists for the precomputation of comparison

suggestions

In order to compare the suggestions computed by CCR, we used the Google Suggest Api

to generate suggestions in parallel for the comparison objects dictionary:

1 with open(./comparison_objects_filename) as json_file:

2 comparison_objects = json.load(json_file)

3 for comparison_object in comparison_objects:

4 ggl_suggestions = get_suggestions(comparison_object)

5 data = {
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6 "comparison_object": comparison_object,

7 "suggestions": ggl_suggestions

8 }

9 co_ggl_suggestions_dict.append(data)

10
11 def get_suggestions(s):

12 ggl_suggestions = lambda s:get(

13 "http://google.com/complete/search?client=gma&q="+s).json()[1]

14 return ggl_suggestions(s)

5.1.1 Dictionary A

Dictionary A is taken from a GitHub project as words_dictionary.json[Dwy19] and con-

tains 369,759 English words. It was used as it was the biggest dictionary of English words

I came across as JSON format.

CCR failed to make suggestions for 349,964 (94,6%) of the 369,759 English words,

hence, compared to the results of the initial experiment, numerics are more disappoin-

ting:

Mean true positives: 0.0219

Mean false negatives: 2.5294

Mean false positives: 0.1410

Mean precision: 0.0074

Mean recall: 0.0022

Mean F1 score: 0.0034

Only one out of fifty words that Google suggests equals a suggestion from CCR. Mean

precision and recall, as well as the F1 score, are very small.

For those comparison objects that CCR succeeds in making suggestions, 8040 words

(40%) produce only one comparative suggestion, 3836 words (19%) produce seven sug-

gestions and more:
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Abbildung 5.4: CCR’s results for Dictionary A

Mean true positives: 0.4094

Mean false negatives: 9.4623

Mean false positives: 2.6343

Mean precision: 0.1376

Mean recall: 0.0411

Mean F1 score: 0.0632

5.1.2 Dictionary B

Dictionary B is taken from a data set containing 190 words used in the paper Categorizing
Comparative Sentences as they are better examples of comparative queries. [PBF+18]

For this dictionary, CCR succeeds in making suggestions for more than half of the com-

parison objects and for most of those, CCR makes seven or more suggestions:



24 5 Integration of CAM with CCR

Abbildung 5.5: CCR’s results for Dictionary B

Hence, comparing these results to Suggestions from the Google Suggest API, numerics

look much better than with dictionary A:

Mean true positives: 0.5

Mean false negatives: 11.3

Mean false positives: 2.6632

Mean precision: 0.0835

Mean recall: 0.0460

Mean F1 score: 0.0149

A different approach to comparing suggestions from CCR with those from the Google

Suggest API is annotating CCR’s suggestions manually. For example, CCR’s suggestions

for the comparison object Word are latex, pages, letterpress, photo, inflection, advertising or

paper. Interpreting the comparison object as the text editor from Microsoft Office, latex
and pages would be useful suggestions. Letterpress is a game and comparing Word to photo,
inflection, advertising or paper would also not make much sense.

This is of course a weakness of this approach as different annotators might certainly

annotate suggestions differently. Some examples of how suggestions were annotated in

in this case are:
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Comparison CCR Suggestions:

Object bold words are annotated as useful

Word latex, pages, letterpress, photo, inflection, advertising, paper

Amazon apple, bookstores, publishers, norse, target, android, borders

Ibuprofen acetaminophen, naproxen, tylenol, aleve, aspirin, celebrex, codeine

Nissan jeep, tesla, corvette, ford, volt

Birthday bathing

Camping survival, hotels, spaniels, lodges

Fox cyborg, duck, trump, ness, abc, link, dish

Pasta pesach, potatoes, noodles, mac, rice

Pen pencil, sword, stroke, brush, finger, pc, keyboard

Rat pigeon, hawk, rats, squirrel, bandicoot, fish, hamster

Doing this for all 190 words from dictionary B and taking the useful suggestions as the

true positives and the rest as the false positives, the mean precision can be calculated:

Mean true positives: 2.1

Mean false positives: 1.0632

Mean precision: 0.6639

The precision of 66 % is pretty good, a mean of only 3.1632 suggestions per comparison

object weakens this though.
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6 Conclusion and Future Work

CCR can be used as a feature that provides CAM with comparative query suggestions.

Even though the quantities of suggestions are very different comparing dictionary A and

B, the quality for more common comparison objects, like those of dictionary B, is quite

OK when compared to suggestions from the Google Suggest API and even better when

tested for usefulness by an annotator.

As discussed, the precision calculated from CCR’s annotated results might depend

strongly on the annotators’ idea of usefulness. To tackle this, the annotation work should

be done by more annotators, who could also be asked to come up with a list of compari-

son suggestions to be able to calculate recall and F1 score.

Apart from further improving the quality and quantity of CCR’s suggestions, it should

be possible to use CCR’s basic functionality to not only provide CAM with a list of com-

parative suggestions but also a list of aspects for every specific comparison object combi-

nation.
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