
Revoking Records in an Immutable Ledger
A platform for issuing and revoking official documents on public blockchains

Konstantinos Karasavvas
Blockchain Initiative
University of Nicosia

Emails: karasavvas.k@unic.ac.cy, kkarasavvas@gmail.com

Abstract—Bitcoin allows anyone to store small amounts of
data on its blockchain as part of a transaction. The data stored
become part of the history of Bitcoin’s blockchain, which after
some time, becomes very tamper resistant, an attribute that many
applications find of great use, e.g. document notary systems,
asset meta-protocols, etc. However, many use cases require
the functionality to revoke (cancel the validity) of the stored
data. Previous attempts to handle revocation were not adequate.
Since tamper resistance is a default attribute one needs a non-
systemic approach to deal with revocation, which usually implies
additional infrastructure to accomplish it. This paper reviews
several revocation methodologies together with advantages and
disadvantages for each one, as well as proposes a simple and clean
solution for revocation without any additional infrastructure or
third-party dependencies.

I. INTRODUCTION

Bitcoin [1], an open decentralized digital currency, intro-
duced technology that allowed for a new way for distributed
systems to reach consensus. That innovation invigorated re-
search in several fields of study like peer-to-peer computing,
cryptography, machine-to-machine interactions, consensus al-
gorithms, etc., not to mention the potential social aspects and
implications of this technology. The technology that Bitcoin
introduced is typically referred to as blockchain or distributed
ledger technology and has the following inherent attributes:

• Decentralized: the valid state is determined by a ma-
jority consensus of the networks participants. Anyone
can attempt to change the state but, for a change to be
successful, the majority needs to agree that the new
state is valid per the network rules.

• Immutable1: transactions can only be added on the
structure; they cannot be altered or removed without
majority consensus. When transactions are added, they
are also timestamped. Every participant has a com-
plete history of all transactions which is synchronized
among the participants. The system is extremely fault-
tolerant and the data stored are practically permanent
during its history (or for as long as there are some
participants on the network).

• Transparent: the process of adding new data entries as
well as the data themselves are publicly available and
anyone can review or access at any point of time.

1Tamper resistant is more precise, but we will use immutable as most of
the literature uses it.

• Open: the network is open for anyone to participate,
i.e. no barriers of entry.

• Secure: strong cryptography ensures that a participant
cannot claim funds belonging to other participants.

The above attributes offer the potential for many interesting
applications in addition to digital currency. In particular, the
Bitcoin protocol allows for including metadata in each transac-
tion that is stored, which allows external applications to store
data in an open, transparent and immutable structure that can
be accessed at any time. Some applications store metadata that
correspond to assets and their ownership [2] [3] [4], while
others allow to prove the existence of a document [5] [6] [7].

The proper way2 to store metadata is by including the
OP_RETURN [8] [9] instruction as part of the transaction.
The maximum amount of data per transaction is 80 bytes.
Several transactions can be used to store more than 80 bytes
but each transaction incurs a fee. Most applications include a
prefix identifier before the actual metadata to make it easier
to spot and gather the transactions, e.g. “CNTRPRTY” for
Counterparty [3] or “DOCPROOF” for Proof-of-Existence [6].

Sometimes applications require the metadata to be removed
or modified but that is not allowed by the very nature of the
blockchain. Thus, most applications either not allow revocation
of records (most notary services like [6]) or allow revocation
with one or more of the following caveats:

1) Centralization: revocation can occur, but there is a
central point of failure

2) Complex infrastructure: revocation can occur because
there is a second decentralization network on top of
Bitcoin’s

3) Permissioned: registration and service fees are re-
quired

In this paper we will present a method for achieving revocation
with a practical approach, while not diverging from the open
and decentralized nature of Bitcoin. In the next section, we will
describe an application which will be used to apply our revoca-
tion approach. Then, in section III, we will examine different
ways of revocation used in other systems and elaborate on the
benefits and drawbacks of each. Section IV will then describe

2There are other ways to store data in Bitcoin’s blockchain (like using fake
addresses in the transaction outputs) but most create a runtime overhead to
the network and thus are frowned upon.



in detail the meta-protocol which allows for several actions,
including the revocation of the metadata. Finally, in the last
sections, we will discuss the solution further and conclude.

II. EXAMPLE APPLICATION

To demonstrate the application of our revocation method-
ology we will describe our open platform3 that makes use of
it. Our platform allows institutions to issue digital credentials
representing certificates, diplomas, driving licenses, etc. The
credentials format is a PDF file which was chosen because it
is a widely-adopted, portable, human-readable format where
viewing software is already available for any platform. It is an
intuitive medium that everybody is comfortable using.

The platform issues credentials on Bitcoin’s blockchain
since it is the oldest and most tested public blockchain. It
has the most security in terms of hashrate and community
philosophy; arguable the most tamper resistant blockchain. It
is already used by most systems that require to store metadata.
Note, however, that the platform itself has no real dependency
on Bitcoin and it could use another blockchain if required.

The platform’s desirable characteristics are:

1) The digital credential, represented as a PDF, should
to be self-contained; include everything it needs to
be validated independently

2) A hash of the credential should be stored in the
blockchain4; the blockchain properties described in
the introduction ensure that the credentials will be
impossible to falsify

3) A single issuance should represent an arbitrary num-
ber of credentials

4) It should be permissionless so that anyone can use
(no barriers of entry, no registration, open source
software)

5) Issuance and validation of credentials should be easy
6) Validation should have no dependency to the issuing

institution; the only dependency is the blockchain
7) Revoking credentials should be possible in a decen-

tralized way
8) Identity of issuing institution should be established in

a decentralized way

The platform already satisfies characteristics 1-6 and in
this section we will describe how it is achieved. The next
two sections will describe how we incorporated revocation
to the platform while adhering to the decentralized attributes
previously discussed.

A. Issuing Credentials

Assuming we have a set of credentials and some metadata
that we want to include for each credential, our platform makes
it trivial to issue them on the blockchain. The process behind-
the-scenes can be briefly described as follows:

3https://github.com/UniversityOfNicosia/blockchain-certificates
4We are using Bitcoin’s blockchain since it is for its security—highest

hashrate— its resilience and security through it longevity

1) Adding credentials metadata: In each PDF credential
we attach some metadata5 in machine-readable format. This
metadata contain the issuer institution and the Bitcoin address
which will be used to publish the certificates on the blockchain.
Optionally, additional metadata, like awardee’s full name, etc.
can be added to provide more useful information on validation.
Note, that the metadata are attached to the credential but are
not visible and can be retrieved only programmatically.

Fig. 1. Adding credentials metadata

2) Calculating merkle root: The credentials are then
hashed together using a merkle tree data structure to produce
a merkle root that can potentially represent tens of thousand
or more credentials. In essence a merkle root represents all the
leaf-hashes (i.e. the credentials) and if a single bit is changed in
any certificate the merkle root would be completely different.

Fig. 2. Calculating merkle root

3) Issuing on the blockchain: We then create a Bitcoin
transaction that contains the special OP RETURN operator
followed by a prefix identifier for the institution followed by
the merkle root from the previous step. We send the transaction
to a Bitcoin node (preferably a local node or one that we
fully trust) and we get the transaction identifier (TxID) back.
After we wait for a few confirmations we can be certain the
transaction (and thus merkle root) is now safely stored in the
blockchain.

Fig. 3. Issuing on the blockchain

5The PDF standard allows for custom metadata [10].



4) Adding blockchain proof metadata: After we issue the
merkle root on the blockchain we need to put some extra
information into each credential’s metadata that proves that
it was issued in the blockchain. The blockchain proof contains
the merkle proof (all the tree children required to calculate
the merkle root starting from the hash of the certificate), the
merkle root and the TxID that we got in the previous step.
We use the chainpoint standard [11] for the blockchain proof.
The additional metadata are added in a deterministic manner,
in such a way that removing it will rollback the credential as
it was after step 1.

Fig. 4. Adding blockchain proof metadata

The credentials are now ready and contain all that is needed
to be independently verified by anyone using the blockchain.
They are disseminated to their owners.

B. Validating Credentials

The platform also provides tools with user-friendly inter-
faces where one can validate a PDF issued by the platform.
There are already some independent6 validators running. A
credential holder can send their credentials to a consumer and
the latter will have everything needed to verify it; they can
use any of the independent validators out there or even get the
source code and install a validator themselves. The validating
process behind-the-scenes is as follows:

1) Extract blockchain proof metadata: The blockchain
proof metadata are extracted and removed from the PDF. The
credential is now the same as it was after Step 1 of issuing
and it was this hash that was issued on the blockchain. The
extracted metadata will be used later on.

Fig. 5. Extract blockchain proof metadata

2) Calculate hash of the remaining certificate: We hash
the PDF credential, which as mentioned above, is the one that
was issued on the blockchain. If the certificate was modified
in any way the hash will differ from the one issued.

3) Get the merkle root stored in the blockchain: We use
the TxID from the extracted metadata to get the transaction
that contains the OP RETURN with the merkle root of all the
credentials.

6Not from the issuing institution.

Fig. 6. Calculate hash of the remaining certificate

Fig. 7. Get the merkle root stored in the blockchain

4) Calculate merkle root from proof and compare: We then
need to validate that the credential’s hash is indeed part of the
merkle root that we got from the blockchain. We do this by
using the credential’s hash (Step 1) and using the merkle proof
from the extracted metadata to reconstruct the merkle root. If
it is the same as the one we got from the OP RETURN, then
we can be certain that this credential is unmodified and the
one issued by the institution.

Fig. 8. Calculate merkle root from proof and compare

The authenticity was thus proven7. The credential is now
part of the Bitcoin’s history and no one can alter it or delete
it. But what if we wanted to revoke the certificate because
it is no longer valid or the name was mistyped, etc.? In the
following section we will examine different ways of revocation
in blockchain.

III. REVOCATION

For applications like the one described above revocation
is an important aspect of the system, although it might not
be used frequently. As is, the platform can only issue a new
credential to fix typographical errors but both the new and old
credential would be valid. More importantly, it can not revoke
erroneous credentials. In this section we will explore potential
solutions to revocation.

A. Centralized revocation

This approach is straight-forward. The credential itself
contains a URL endpoint that is used to display and/or validate
the credential. The URL points to the issuer’s8 website where
an internal database is consulted regarding validity of the
credential, etc. This approach is being used by Gradbase [12]
and revocation is trivial to manage but it is centralized.

7But see section V for more on identity issues.
8Or to a service provider that manages issuing for clients.



We strongly believe that having a centralized validator
defeats the purpose of using Bitcoin’s blockchain9 in the first
place.

B. Re-issue all credentials

This approach re-issues all credentials every time a new
batch of credentials needs to be issued. The new batch could
contain corrections to previously issued credentials or even
not include a past certificate, thus revoking it. Since a single
transaction can be used for tens or hundreds of thousands
credentials, it does not make a difference on the issuing itself.
For this to work, the validator will need to take the last issued
transaction and check that the PDF’s hash is in the merkle root
as usual. Note that the transaction in the blockchain proof from
the PDF metadata is not used in this case.

The benefits of this approach is that it is very easy to
implement; we just need to slightly change the credential
valitation rules. However, there are several drawbacks:

• It requires very good management of credentials. This
is important for all approaches but re-issuing every-
thing every time introduces the possibility of making
errors with past credentials as well, which is not the
case with other approaches

• Bitcoin’s timestamp is meaningless since after re-
issuing the previous certificates lose their timestamp

• If the private key of the issuing address is com-
promised, all certificates (past and future) would be
invalidated

• We break chainpoint semantics; chainpoint tries to
become a standard on how to put and validate data
into the blockchain

• Most importantly, all certificates need to be dissem-
inated again to all the awardees; this is infeasible in
practice

C. Extra transaction outputs per credential

This approach was used by the first version of Block-
certs [13] [14], a platform to publish academic certificates on
the blockchain. The process is similar to the one described
in the previous section but the certificate is just a JSON file
with no other representation. All users/consumers need specific
software to visualize the JSON file and see the certificate.

The transaction that issues the OP RETURN with the
merkle root includes several extra outputs sending some
satoshis to each. Specifically, for each credential two extra
outputs are created one owned by the institution10 and one by
the awardee. Upon issuing, 2750 satoshis11 are sent to each
of the extra addresses. The validator rules state that the hash
has to be valid and that both of the extra addresses require to
have funds. If either of the amounts has been spent (by the
institution or by the awardee) then the Blockcerts certificate is
considered invalid.

9Or any open blockchain.
10Sent to an address which private key is controlled by the institution.
11At the time that was cheap enough without the output being considered

dust, i.e. the transaction fee cost of spending the amount is close to its value.

This approach has the benefit that there is a lot of granular-
ity and flexibility on revocation, especially that both the issuer
and the awardee can revoke the certificate12. One can think of
simple variations, like having only one extra address allowing
only the institution to revoke, etc. but overall, this approach
also has significant drawbacks:

• Makes issuing expensive; for 1,000 certificates there
will be 2,000 extra outputs with 2,750 satoshis each
which means 0.055 bitcoins. Moreover, a transaction
with that many outputs will incur significant fees

• That approach is limited to the number of certificates
that can be issued since there is a limit of 100k bytes
per transaction

• Revocation is price-dependent

• Depending on Bitcoin’s price the amount of satoshis
could be considered dust13 and not be easy to spend

• Issuers require infrastructure to keep track of all
the extra information per certificate: the awardees’
addresses and the institution’s addresses and private
keys for all certificates ever issued. It also has the
overhead that each user/graduate to provide an address
they control to the issuer.

• Even awardees with more than one certificate need
to remember which address corresponds to which
certificate

• The Unspent Transaction Output set (UTXO) is unnec-
essarily bloated increasing the runtime requirements of
nodes

D. Revocation is handled by an issuer-hosted CRL

This approach is used by the second version of Block-
certs [14]. Effectively, the JSON certificate contains a URL
which resolves to a file that contains a certificate revocation
list (CRL); effectively all the revoked certificates of that issuer.

This introduces a central point of failure and has similar
disadvantages with the centralized revocation approach that we
described above.

E. Use an additional decentralization layer for revocation

Another approach is to make use of another blockchain like
Factom [7], Alexandria [15], Lbry [16] or an Ethereum [17]
smart contract to store the revocation information. Entries on
these blockchains would represent a credential in some way
and it would allow revocation at that level; pointing at the
appropriate transaction at the Bitcoin network.

This approach is promising but it does add an additional
dependency (blockchain layer), which introduces unwarranted
complexity both design-wise and implementation-wise. It is
worth noting however, that if the additional overhead is ac-
cepted, this approach could offer a complete alternative to how
our example application would issue and validate credentials,
i.e. it could handle more than the revocation part.

12Arguably, the only reason for the awardee to revoke a certificate is because
a fake issuer created their certificate. But if that is the case they would not
be able to revoke anyway since the fake institution would not have used an
address that the awardee controls!

13The transaction fee cost of spending the amount is close to its value.



F. Blockchain specializing in credential issuing

Similarly, and for completeness, one other approach would
be to design a specialized blockchain platform to deal with
credentials; their issuance, dissemination, validation, revoca-
tion, etc. Private initiatives have been announced already but
there are no real results yet. From our perspective, a private
blockchain platform suffers from all the caveats mentioned in
the introduction. On the other hand, a public blockchain that
incentivizes institutions to use it would be of particular interest
but we are not aware of any such attempts.

It is worth noting that there are attempts to design
blockchains that allow modifying past transactions [18] but
in practice they do introduce centralization points invalidating
several of the advantages that blockchain offers.

G. Credentialing meta-protocol

The final approach and the one that we will describe in
great detail in the next section is to encode meta-protocol
information in the 80 bytes that we have available in the
OP RETURN. The meta-protocol will contain operations spe-
cific for credentials and will refer to previous transactions
as appropriate. The validator rules will be such that other
transactions could be consulted before the final resolution for
credential validity.

This will allow to implement revocation as well as ad-
ditional functionality. Some of the encoded operations are:
issuing credentials, revoking a credential batch or specific
credentials and even revoke issuing addresses. This approach
has all the required attributes, i.e. it is a simple and intuitive
decentralized solution that is open and has no other depen-
dency than a single blockchain. The only disadvantage of this
approach is that because we have a limit of 80 bytes we can
only revoke two credentials at a time, which means a different
transaction per two revocations. However, since revocations
are not very frequent, it is a minor inconvenience.

IV. BDIP META-PROTOCOL

This section describes a meta-protocol, named Blockchain
Document Issuing Protocol (BDIP), that specifies how to issue,
revoke and validate credentials on a blockchain. The protocol
defines the structure of the messages as well as their semantic
meaning. The messages are limited to the 80 bytes that we
can store in an OP RETURN. Each operation is a separate
transaction which consists of an input from a Bitcoin address
that the institution controls14, the OP RETURN output and,
optionally, a change output.

A. Message Operations and Structure

Every message consists of a header and the payload.
We will represent messages in their hexadecimal value, i.e.
maximum of 160 digits. The header is 8 bytes and has three
parts:

1) An identifier for the protocol; the ASCII of ’BDIP’,
which is 4 bytes and corresponds to ’42444950’ in
hex

14And is used for the transaction fees.

Fig. 9. Header — structure / bytemap

2) Protocol version; 2 bytes for a total of 65536 versions,
starting with ’0001’ in hex

3) Protocol operation; 2 bytes for a total of 65536
operations

Every operation starts with the above header being differ-
entiated only by the last 2 bytes. Currently, BDIP version 1,
defines five operations.

1) Issue operation: Issues a batch of credentials. The
operation code is ‘0004’. The issuer identifier is there just

Fig. 10. Issue credentials — structure / bytemap

to allow for an institution to brand the issuing making it easy
to identify when looking at an OP RETURN message. It is
the equivalent of the prefix that was described in our example
application in section II. It is optional and does not play a role
in validation.

2) Issue with expiry operation: Issues a batch of credentials
that will expire some time in the future. The operation code is
‘0006’. This is similar to the previous operation with the ad-

Fig. 11. Issue credentials with expiry data — structure / bytemap

dition of an expiry date. The expiry date could be represented
either as Unix time15 or a future block height. If time is used
it will be resolved as a Median Time-Past (MTP) [19]. During
validation expiry is checked before anything else.

3) Revoke batch operation: Revokes a whole batch of cre-
dentials. The operation code is ‘0008’. This simple operation

Fig. 12. Revoke a batch of credentials — structure / bytemap

consists of just a transaction id (or two) of the issuing batch

15https://en.wikipedia.org/wiki/Unix time



that we want to revoke. The transaction needs to be from
a previous issuing operation that has been send from the
same address as the revoke operation. During validation revoke
operations are taken into consideration.

4) Revoke credentials operation: Revokes one or two
specific credentials. The operation code is ‘000c’. A single

Fig. 13. Revoke specific credentials — structure / bytemap

transaction id is specified from an existing issuing operation;
both transactions (issuing and the revocation) have to originate
from the same Bitcoin address. Then after the transaction id,
one or two file hashes can be used for revocation. These are
the PDF credential hashes as produced if we hash the file
after step one of the issuing process (see subsection II-A).
To save space we apply RIPEMD-160 hash function on the
hashes to reduce them to 20 bytes each fitting them neatly in
the message. During validation the credential’s hash is hashed
again with RIPEMD-160 and compared to each of the hashes
in revoke operations.

5) Revoke address operation: Revokes an issuing address.
The operation code is ‘ff00’. The address is specified in the

Fig. 14. Revoke address — structure / bytemap

public key hash format and not as an address16. Two addresses
can be specified for the compressed and uncompressed version
of the public key.

After a revoke address operation has been issued the current
Bitcoin address cannot be used again to issue credentials or
for anything else. The operations until the revocation are still
valid but nothing after it. This can be useful when the private
key of the institution has been compromised and we want to
prohibit others issuing on the institution’s behalf.

B. Validation Rules

When a credential is presented for validation, we have to
follow specific rules to capture the semantics defined in the
previous section. Several steps need to be followed and for
version 1 of the protocol these are:

1) Validate the credential as described in section II-B;
and ensure that the issuing operation has at least one
confirmation

2) If the operation was issued with expiry, check that it
has not expired first.

a) If the expiry is by block height compare with
the current block height and fail validation if

16This is the same way that addresses are specified in scriptPubKey scripts.

the current block is higher than the one in
the issuing transaction

b) If the expiry is by Unix time calculate the
MTP, compare them and fail validation if the
MTP is higher than the expiry operation in
the issuing transaction

3) Get all transactions for the issuing address before the
issuance of the credential in question. If a revoke
address operation contains the issuing address, the
validation fails; i.e. the address was revoked, so no
new credentials should be issued

4) Get all transactions for the issuing address after the
issuance of the credential in question. Check all
revoke operations until the last transaction or until
a revoke address with that issuing address is found

a) If a revoke batch operation exists check
whether it revokes the issuing transaction and
if yes, fail validation

b) If a revoke credentials operation exists check
whether it revokes the RIPEMD-160 of the
credential’s hash and, if yes, fail validation

Of course, the implementation is much more optimized
than the above description. For example, a single call17 can
be used to retrieve all transactions related to an address and
the rest of the checks/calculations are trivial.

V. DISCUSSION AND FUTURE WORK

The system and protocol described in this paper is a
working system already in production use for several years
publishing certifications on the blockchain since 2014. From
2017 all diplomas issued by the University of Nicosia are
issued on Bitcoin’s blockchain and other universities (e.g.
The British University in Dubai) already make use of it. The
revocation functionality was added a year ago but it can be
used to revoke past qualifications as well.

Some operations, like issue and issue with expiry, could be
one operation but given the huge space of potential operations
we opted to have simple operations for more straight-forward
implementation of the validation rules.

It is important to emphasize, that in contrast to some of
the other revocation approaches, anyone can run a validator
to verify credentials. However, it is much easier to use online
validators operated by institutions that used this solution18.
Any credential issued by any institution can be verified to
any available validator assuming that the same open source
repository is used.

Note that, when issuing, there is an optional institution
identifier. If used, it could make the validator produce extra in-
formation on certain institutions. For example, a validator from
institution A would apply to credentials from all institutions
but if it finds credentials that they issued it can consult internal
records to provide with even more information for those cre-
dentials. Although this is possible, it is not recommended since

17Several services provide such an interface and more than one can be used
to avoid a centralized call. With a bit of more extra work a local node can
also be consulted instead of several third party services.

18At least two official validators existed when this was written:
https://verify.unic.ac.cy/verify and http://94.200.87.28:5000/verify



we would not like to encourage differentiation between the
validators’ functionality—even if that functionality is above the
fundamentals. This is because end-users might be incentivized
to use the validators with the extra information. Having said
that, the system is completely open.

Performance-wise, the only potential overhead could be in
the number of transactions created from an issuing address.
We expect institutions to use those addresses with care and
when necessary but, even if they do not, it will hardly
influence the system as a whole. Only the credentials from
that institution will take longer than usual19 so they would
only hurt themselves.

We do intend to extend this work in several ways. First,
we will enable contacting a local Bitcoin node for validation
purposes to eliminate the dependency on third-party APIs—
even though we are using several and thus is not exactly cen-
tralized even now. More importantly, though, we are working
on credentials schemata and an identity solution.

Institutions are already allowed to issue credentials with a
wide range of metadata. However, different metadata will put a
lot of strain on keeping the validator up-to-date with different
metadata. By introducing schemas to define credentials we
can formalize what is supported by each validator and even
automate user interface creation depending on the specific
schema—allowing validators to display information from a
credential’s metadata without any a-priori knowledge of the
structure or content of the metadata.

Finally, a very important aspect for the security of such
systems—i.e. it applies for all of the other approaches
mentioned—is how to resolve and verify the identity of each
institution. This is an unsolved problem although there are
several approaches trying to tackle with it. We are exploring
our options on identity and are leaning towards a web-of-trust
approach but it is still work in progress and outside the scope
of this paper.

VI. CONCLUSION

While other solutions for revocation in blockchains have
been suggested they do have one or more caveats; others
are centralized, others require complex infrastructure and re-
sources, while others are permissioned services.

We have described our solution for decentralized digital
credentials using blockchain technology where an institution
can issue self-contained digital credentials which can be vali-
dated immediately in a trustless manner with no single point
of failure.

While we focused on the domain of digital credentials,
the revocation methodology and the meta-protocol solution
described can apply to other domains—any kind of official
document can be timestamped on the blockchain—that require
immutability but still need a way to revoke entries.

ACKNOWLEDGMENT

The authors would like to thank the Blockchain Initiative
team of the University of Nicosia and especially George

19Since it will need to traverse the address’s transactions for potential
revocations.

Giaglis and Antonis Polemitis for their feedback throughout
design and implementation.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.”
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] J. R. Willett, M. Hidskes, D. Johnston, R. Gross, and
M. Schneider, “Omni protocol specification.” [Online]. Available:
https://github.com/OmniLayer/spec

[3] “Counterparty specification.” [Online]. Available:
https://counterparty.io/docs/protocol specification/

[4] “Open assets protocol.” [Online]. Available:
https://github.com/OpenAssets/open-assets-protocol

[5] “Stampery website.” [Online]. Available: https://stampery.com/
[6] “Proof-of-existence website.” [Online]. Available:

http://proofofexistence.org/
[7] P. Snow, B. Deery, J. Lu, D. Johnston, and

P. Kirby, “Factom white paper.” [Online]. Available:
https://www.factom.com/devs/docs/guide/factom-white-paper-1-0

[8] “Bitcoin OP RETURN community wiki.” [Online]. Available:
https://en.bitcoin.it/wiki/OP RETURN

[9] M. Bartoletti and L. Pompianu, “An analysis of bitcoin OP RETURN
metadata,” arXiv:1702.01024v2 [cs.CR], 2017.

[10] “Pdf standard custom metadata.” [Online]. Available:
https://helpx.adobe.com/acrobat/using/pdf-properties-metadata.html

[11] W. Vaughan, J. Bukowski, and S. Wilkinson, “Chainpoint paper.”
[Online]. Available: https://chainpoint.org/

[12] “Gradbase website.” [Online]. Available: https://www.gradba.se/en/
[13] “Blockcerts website.” [Online]. Available: https://www.blockcerts.org/
[14] “Blockcerts revocation v1 v2.” [Online]. Available:

https://github.com/blockchain-certificates/cert-schema/issues/24
[15] “Alexandria website.” [Online]. Available: http://www.alexandria.io/
[16] “Lbry website.” [Online]. Available: https://lbry.io/
[17] “Ethereum white paper.” [Online]. Available:

https://github.com/ethereum/wiki/wiki/White-Paper
[18] G. Ateniese, B. Magri, D. Venturi, and E. Andrade, “Redactable

blockchain - or - rewriting history in bitcoin and friends,” IEEE Xplore
10.1109/EuroSP.2017.37, 2017.

[19] “Median time-past as endpoint for lock-time calculations.”
[Online]. Available: https://github.com/bitcoin/bips/blob/master/bip-
0113.mediawiki


