

Zephyr Authentication - ZAUTH

September 2020

More and more devices can now connect to each other, remote servers, and mobile devices. This added

functionality provides end-users with better, more fully featured products, but at the very real risk of

malicious attacks. The ability to authenticate peer communications, along with secure messaging, is

how devices can protect themselves. Unfortunately, most RTOS systems do not have a framework or

library to authenticate devices. The purpose of this ZAUTH proposal is to provide an easy to use

framework to authenticate two peers over different transports such as Bluetooth and Serial. Zephyr is

uniquely positioned with a large installed base and security as one of its key goals.

Some examples of device connectivity include:

a) Mobile app connecting to a room control via Bluetooth to control light settings.

b) Conveyor controller and remote sensors to detect speed and load.

c) Consumable authentication such as printer cartridges or continuous glucose monitor sensor.

Proposed Change

ZAUTH is a library to provide a consistent set of APIs to authenticate peer devices over an arbitrary

transport such as Bluetooth or Serial. The authentication method and transport layer are selectable

using the existing Zephyr KConfig process. The underlying transport is abstracted from the ZAUTH

authentication methods using an opaque transport handle. This initial proposal supports Bluetooth and

Serial (UART) transports along with Challenge-Response and DTLS authentication methods. ZAUTH is

design to accommodate additional authentication methods and transports.

ZAUTH library code is located in the following directories from the Zephyr root:

Directory Description
lib/auth Source and internal header files.
include/auth Public header files for use by applications.
samples/auth ZAUTH sample programs.
test/lib/auth Unit test files.

Ease of use is an important goal of ZAUTH, most developers treat security as a headache. ZAUTH is

easily integrated by using the following KConfig menu selections under “Additional libraries-

>Authentication library” as shown below.

Authentication API

The Authentication API is designed to abstract away the authentication method and transport. The

calling application configures the ZAUTH library, starts the authentication process and monitors results

via a status callback. The API is also designed to handle multiple concurrent authentication processes,

for example If device is acting as a Bluetooth Central and Peripheral. An example of the API used is

shown in the following code snippet.

static authenticate_conn central_auth_conn;

void auth_status(struct authenticate_conn *auth_conn, enum auth_instance_id

instance, auth_status_t status, void *context)

{

 if(status == AUTH_STATUS_SUCCESSFUL) {

 printk(“Authentication Successful.\n”);

 } else {

 printk(“Authentication status: %s\n”, auth_lib_getstatus_str(status));

 }

}

/* BLE connection callback */

void connected(struct bt_conn *conn, u8_t err)

{

 /* start authentication */

 auth_lib_start(¢ral_auth_conn);

}

void main(void)

{

 int err = auth_lib_init(¢ral_auth_conn, AUTH_INST_1, auth_status, NULL,

 opt_parms, flags);

 err = bt_enabled(NULL);

 while(true) {

 k_yield();

 }

}

Client-Server Model

ZAUTH is designed as a client server model for the authentication message flow. The client initiates the

authentication messaging sequence where the server responds. Depending on the authentication

method chosen (Challenge-Response, DTLS, other), mutual authentication can be used to authenticate

both sides of the connection. For some transports, this model maps nicely to the native transport

model. Bluetooth is an example of this, a peripheral is in the server role and the central is in the client

role. For Serial transports, the choice of which endpoint acts as the client or server is up to the

application firmware.

Authentication Instances

Multiple authentication instances are possible concurrently authenticating connections over different

communication links. For example, a Bluetooth central device could use different instances to

authenticate different peripherals. Another example could be a HVAC controller with Bluetooth to

communicate with mobile devices and a serial interface to control HVAC equipment. One instance

would authenticate the mobile device, the second instance would authenticate the HVAC equipment.

Under the hood, an authentication Instance is a Zephyr thread and authentication method.

Authentication Methods

Two authentication methods are proposed, DTLS and simple Challenge-Response. However, the
authentication architecture can support additional authentication methods in the future.

• DTLS. The TLS protocol is the gold standard of authentication and securing network
communications. DTLS is part of the TLS protocol, but designed for IP datagrams which are
lighter weight and ideal for resource constrained devices. Identities are verified using X.509
certificates and trusted root certificates. The DTLS handshake steps are used for authentication,
a successful handshake means each side of the connection has been properly authenticated. A
result of the DTLS handshake steps is a shared secret key which is then used to encrypted
further communications. For the ZAUTH this key is not used, however it can be used for
application level security (see MITM below).

• Challenge-Response. A simple Challenge-Response authentication method is an alternative
lighter weight approach to authentication. This method uses a shared key and a random nonce.
Each side exchanges SHA256 hash of Nonce and shared key, authentication is proven by each
side knowing shared key. A Challenge-Response is not as secure and DTLS, however for some

applications it is sufficient. For example, if a vendor wishes to restrict certain features of an IoT
device to paid applications.

The proposed authentication is done at the application layer after connecting over the lower transport.
This requires the firmware application to ignore or reject any messages until the authentication process
has completed. This complicates the application firmware but does enable authentication independent
of a vendor’s stack such as Bluetooth, TCP/IP, or serial. In addition, most embedded engineers have no
desire to modify a vendor’s stack.

Secure Hardware

Secure hardware elements provide a high level of security and cryptographic functionality at a low cost

and power consumption. Ideal for resource constraint IoT devices. The key material and operations are

performed in hardware, no keys are stored in the code. Common use cases include ECC or RSA key

generation, signature verification, certificate storage, and key storage. Each authentication method can

potentially use secure hardware. For example, the Challenge-Response can use the secure hardware to

store and verity the shared key. Some examples of secure hardware are the Microchip ATECC608A, NXP

SE050, and Infineon OPTIGA Trust M SLS32AIA.

Initially ZAUTH will provide a secure hardware interface to the Challenge-Response authentication

method. It is envisioned more secure hardware support will be added in later Zephyr releases.

Detail Design

The high-level diagram below shows the main ZAUTH components.

Client App

Auth thread
+ Auth Method

Lower Transport Lower Transport

Auth thread
+ Auth Method

Bluetooth,
serial, other

Server App

Auth API Auth API

st
at

u
s

ca
llb

ac
ks

st
at

u
s

ca
llb

ac
ks

Authentication is performed in a separate thread started by the application. Each authentication

method uses a dedicated thread to exchange authentication message with their peer. Adding additional

authentication methods is done by creating a authentication instance. Messages are passed between

the authentication thread and lower transport using an abstracted transport handle which maps to a Tx

or Rx queue. The authentication threads are unaware of how messages are transferred. Optionally the

lower transport can be configured to bypass the Tx queue and send the message directly to the lower

transport, by passing the Tx queue. This is ideal for lower transports that handle their own message

queueing.

An Authentication method is a defined message protocol between two peers. The message protocol

contains details of the contents and the order of messages. The DTLS protocol is an example of a

detailed authentication protocol. Messages are different sizes and depending on the lower transport,

may not fit into a transports MTU size. For example, the default MTU for Bluetooth is 23 bytes versus

the 512 byte minimum possible for DTLS record.

Some authentication methods are designed to handle a continuous byte stream (i.e. TLS) others require

complete messages (i.e. Challenge-Response). For those authentication methods requiring complete

messages, ZAUTH can disassemble and re-assemble messages over the transport layer. For example, if a

267 byte message is send over a Bluetooth link with an MTU of 150, ZAUTH will break up the message

into one 150 byte message and a second 117 byte fragments when sending. The receiving side will

reassemble the fragments into the original 267 byte message before forwarding to the Rx queue.

The diagram below shows how the Tx and Rx queues are used along with message fragmentation.

Auth thread

auth_xport_send()

optionally

fragments msg

TX Queue

Lower Transport

k_sem

Lower transport

waits on semaphore,

when data added to

queue sem signaled

D
irect se

n
d

RX Queue

k_sem

auth_xport_recv()

()

auth_msg_assemble()

Assembles fragments,

forwards full message to RX

queue

N
o

 fragm
en

tatio
n

Auth thread

wait on

semaphore,

when data

added sem

signaled
Tran

sp
o

rt Layer In
d

ep
en

d
en

t

The Bluetooth Central Authentication sample (see samples/authentication/bluetooth/central_auth)

provides a good example to drill deeper into the transport layer interface and how Bluetooth is “hooked

up” to ZAUTH. The GREEN boxes are Bluetooth transport specific.

In auth_xp_bt_init() the Bluetooth connection (struct bt_conn) is added, along with the

transport handle, to a connection using the struct auth_xport_connection_map

App

auth_xport_send()

breaks up message into several MTU

size fragments

auth_xp_bt_central_send()

auth_xp_bt_central_tx()

bt_gatt_write()

Bluetooth Stack

auth_xp_bt_central_notify()

Puts one fragment

auth_message_asssemble()

Assembles fragments into full message

Auth_xport_buffer_put()

Puts message into Rx queue.

auth_xport_recv()

Reads from Rx queue

Transport Layer Interface

Transport layer details vary greatly, it does not make sense to create a one-size-fits-all transport API.

ZAUTH separates the transport into transport independent and transport specific. For example, the

details of the Bluetooth transport are in the auth_xport_bt.c file. This includes direct calls into the

Zephyr Bluetooth stack. The transport common function, auth_xport_init(), calls the transport

specific initialization function, passing the opaque transport handle (auth_xport_hdl_t) as an

argument and transport specific parameters. The lower transport is responsible for mapping any

transport specific variables to the transport handle. For example, the Bluetooth transport internally

maps the transport handle to a Bluetooth connection handle, struct bt_conn.

The organization of the transport layers are show in the following diagram.

Main App

Auth Api +
Auth Thread

Common Transport layer

Transport Specific

Additional Topics

Comparison of Bluetooth Pairing and Authentication

Simply put, for commercial IoT applications pairing is not authentication. The Bluetooth version 5
specification does define three methods of authentication (Bluetooth spec version 5, Vol 2, Part F,
Section 4.2.9): a) Numeric Comparison, b) Passkey, and c) Out of Band. All of these methods require a
display on the device and a human in the loop. In all of these options, the user is manually performing
the authentication. For commercial IoT applications, this is not an option. Imagine a commercial building
where hundreds of light switches (the IoT devices) must be manually paired. Error prone and costly
work.

Pairing establishes an encryption key for both parties (Central and Peripheral), which is different
from validating the identity of the remote peer. This is true for both Legacy and LE Secure pairing. While
LE Secure pairing uses an ECC keypair and Diffie-Hellman Elliptic Curve to protect against eavesdropping,
there is no capability to identify the remote peer.

GATT Authentication

GATT Authentication defined in the Bluetooth spec (Version 5, Vol 3, Part G, Section 8.1) is used to
enable a per characteristic authentication using a shared key. It does not authenticate a Bluetooth peer
(Central or Peripheral).

Google Fast Pair Service (GFPS)

This is a pairing method developed by Google to quickly pair consumer devices with and a phone and
user’s account. See: https://developers.google.com/nearby/fast-pair/spec, for details. It is part of
Google’s Nearby platform (see: https://developers.google.com/nearby). Authentication is accomplished
by pre-shared keys provide by Google after registering your device (the thing you’re developing) with
Google. While GFPS provides a great user experience, it has several drawbacks, specifically: a) requires a
mobile phone, b) requires Google approval for your device, and c) licensing may not be consistent with
Zephyr.

https://developers.google.com/nearby/fast-pair/spec
https://developers.google.com/nearby

