Skip to content

Latest commit

 

History

History

yolov8

YOLOv8

内容

模型库

基础检测模型

网络网络 输入尺寸 图片数/GPU 学习率策略 TRT-FP16-Latency(ms) mAPval
0.5:0.95
mAPval
0.5
Params(M) FLOPs(G) 下载链接 配置文件
*YOLOv8-n 640 16 500e 1.8 37.3 53.0 3.16 8.7 下载链接 配置文件
*YOLOv8-s 640 16 500e 3.4 44.9 61.8 11.17 28.6 下载链接 配置文件
*YOLOv8-m 640 16 500e 6.5 50.2 67.3 25.90 78.9 下载链接 配置文件
*YOLOv8-l 640 16 500e 10.0 52.8 69.6 43.69 165.2 下载链接 配置文件
*YOLOv8-x 640 16 500e 15.1 53.8 70.6 68.23 257.8 下载链接 配置文件

Open Images v7 大规模600类检测模型

网络网络 输入尺寸 图片数/GPU 学习率策略 TRT-FP16-Latency(ms) mAPval
0.5:0.95
mAPval
0.5
Params(M) FLOPs(G) 下载链接 配置文件
*YOLOv8-n 640 16 100e 1.8 - - 3.16 8.7 下载链接 配置文件
*YOLOv8-s 640 16 100e 3.4 - - 11.17 28.6 下载链接 配置文件
*YOLOv8-m 640 16 100e 6.5 - - 25.90 78.9 下载链接 配置文件
*YOLOv8-l 640 16 100e 10.0 - - 43.69 165.2 下载链接 配置文件
*YOLOv8-x 640 16 100e 15.1 - - 68.23 257.8 下载链接 配置文件

实例分割模型

网络网络 输入尺寸 图片数/GPU 学习率策略 TRT-FP16-Latency(ms) box AP mask AP Params(M) FLOPs(G) 下载链接 配置文件
*YOLOv8-n 640 16 500e - 36.6 - 3.4 12.6 下载链接 配置文件
*YOLOv8-s 640 16 500e - 44.6 - 11.8 42.6 下载链接 配置文件
*YOLOv8-m 640 16 500e - 49.7 - 27.3 110.2 下载链接 配置文件
*YOLOv8-l 640 16 500e - 52.1 - 46.0 220.5 下载链接 配置文件
*YOLOv8-x 640 16 500e - 53.4 - 71.8 344.1 下载链接 配置文件

P6大尺度模型

网络网络 输入尺寸 图片数/GPU 学习率策略 TRT-FP16-Latency(ms) mAPval
0.5:0.95
mAPval
0.5
Params(M) FLOPs(G) 下载链接 配置文件
*YOLOv8-P6-x 1280 16 500e 55.0 - - 97.42 522.93 下载链接 配置文件

注意:

  • YOLOv8模型mAP为部署权重在COCO val2017上的mAP(IoU=0.5:0.95)结果,且评估未使用multi_label等trick;
  • YOLOv8模型训练使用COCO train2017作为训练集,Box AP为在COCO val2017上的mAP(IoU=0.5:0.95)结果;
  • YOLOv8模型训练过程中默认使用8 GPUs进行混合精度训练,默认lr为0.01为8卡总batch_size的设置,如果GPU卡数或者每卡batch size发生改动,也不需要改动学习率,但为了保证高精度最好使用总batch size大于64的配置去训练;
  • TRT-FP16-Latency(ms)模型推理耗时为TensorRT-FP16下测试的耗时,不包含数据预处理和模型输出后处理(NMS)的耗时。测试采用单卡Tesla T4 GPU,batch size=1,测试环境为paddlepaddle-2.3.2, CUDA 11.2, CUDNN 8.2, GCC-8.2, TensorRT 8.0.3.4
  • 如果你设置了--run_benchmark=True, 你首先需要安装以下依赖pip install pynvml psutil GPUtil

部署模型

网络模型 输入尺寸 导出后的权重(带nms) 导出后的权重(exclude_nms) ONNX(exclude_post_process)
YOLOv8-n 640 (w_nms) (wo_nms) (onnx)
YOLOv8-s 640 (w_nms) (wo_nms) (onnx)
YOLOv8-m 640 (w_nms) (wo_nms) (onnx)
YOLOv8-l 640 (w_nms) (wo_nms) (onnx)
YOLOv8-x 640 (w_nms) (wo_nms) (onnx)

注意:

  • 带nms的导出权重为普通导出方式,加trt表示用于trt加速,对NMS和silu激活函数提速明显。运行命令为: CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c ${config} -o weights=${weights} trt=True
  • exclude_nms导出的权重表示去除NMS导出,返回2个Tensor,是缩放回原图后的坐标和分类置信度。运行命令为: CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c ${config} -o weights=${weights} exclude_nms=True trt=True
  • exclude_post_process导出表示去除后处理导出,返回和YOLOv5导出ONNX时相同格式的concat后的1个Tensor,是未缩放回原图的坐标和分类置信度。运行命令为: CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c ${config} -o weights=${weights} exclude_post_process=True trt=True

使用教程

0. 一键运行全流程

将以下命令写在一个脚本文件里如run.sh,一键运行命令为:sh run.sh,也可命令行一句句去运行。

model_name=yolov8 # 可修改,如 ppyoloe
job_name=yolov8_s_500e_coco # 可修改,如 ppyoloe_plus_crn_s_80e_coco

config=configs/${model_name}/${job_name}.yml
log_dir=log_dir/${job_name}
# weights=https://bj.bcebos.com/v1/paddledet/models/${job_name}.pdparams
weights=output/${job_name}/model_final.pdparams

# 1.训练(单卡/多卡),加 --eval 表示边训边评估,加 --amp 表示混合精度训练
# CUDA_VISIBLE_DEVICES=0 python tools/train.py -c ${config} --eval --amp
python -m paddle.distributed.launch --log_dir=${log_dir} --gpus 0,1,2,3,4,5,6,7 tools/train.py -c ${config} --eval --amp

# 2.评估,加 --classwise 表示输出每一类mAP
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c ${config} -o weights=${weights} --classwise

# 3.预测 (单张图/图片文件夹)
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c ${config} -o weights=${weights} --infer_img=demo/000000014439_640x640.jpg --draw_threshold=0.5
# CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c ${config} -o weights=${weights} --infer_dir=demo/ --draw_threshold=0.5

# 4.导出模型,以下3种模式选一种
## 普通导出,加trt表示用于trt加速,对NMS和silu激活函数提速明显
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c ${config} -o weights=${weights} # trt=True

## exclude_post_process去除后处理导出,返回和YOLOv5导出ONNX时相同格式的concat后的1个Tensor,是未缩放回原图的坐标+分类置信度
# CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c ${config} -o weights=${weights} exclude_post_process=True # trt=True

## exclude_nms去除NMS导出,返回2个Tensor,是缩放回原图后的坐标和分类置信度
# CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c ${config} -o weights=${weights} exclude_nms=True # trt=True

# 5.部署预测,注意不能使用 去除后处理 或 去除NMS 导出后的模型去预测
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/${job_name} --image_file=demo/000000014439_640x640.jpg --device=GPU

# 6.部署测速,加 “--run_mode=trt_fp16” 表示在TensorRT FP16模式下测速,注意如需用到 trt_fp16 则必须为加 trt=True 导出的模型
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/${job_name} --image_file=demo/000000014439_640x640.jpg --device=GPU --run_benchmark=True # --run_mode=trt_fp16

# 7.onnx导出,一般结合 exclude_post_process去除后处理导出的模型
paddle2onnx --model_dir output_inference/${job_name} --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file ${job_name}.onnx

# 8.onnx trt测速
/usr/local/TensorRT-8.0.3.4/bin/trtexec --onnx=${job_name}.onnx --workspace=4096 --avgRuns=10 --shapes=input:1x3x640x640 --fp16
/usr/local/TensorRT-8.0.3.4/bin/trtexec --onnx=${job_name}.onnx --workspace=4096 --avgRuns=10 --shapes=input:1x3x640x640 --fp32

1. 训练

执行以下指令使用混合精度训练YOLOv8

python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/yolov8/yolov8_s_500e_coco.yml --amp --eval

注意:

  • --amp表示开启混合精度训练以避免显存溢出,--eval表示边训边验证。

2. 评估

执行以下命令在单个GPU上评估COCO val2017数据集

CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/yolov8/yolov8_s_500e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolov8_s_500e_coco.pdparams

3. 推理

使用以下命令在单张GPU上预测图片,使用--infer_img推理单张图片以及使用--infer_dir推理文件中的所有图片。

# 推理单张图片
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/yolov8/yolov8_s_500e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolov8_s_500e_coco.pdparams --infer_img=demo/000000014439_640x640.jpg

# 推理文件中的所有图片
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/yolov8/yolov8_s_500e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolov8_s_500e_coco.pdparams --infer_dir=demo

4.导出模型

YOLOv8在GPU上推理部署或benchmark测速等需要通过tools/export_model.py导出模型。

当你使用Paddle Inference但不使用TensorRT时,运行以下的命令导出模型

python tools/export_model.py -c configs/yolov8/yolov8_s_500e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolov8_s_500e_coco.pdparams

当你使用Paddle Inference且使用TensorRT时,需要指定-o trt=True来导出模型。

python tools/export_model.py -c configs/yolov8/yolov8_s_500e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolov8_s_500e_coco.pdparams trt=True

如果你想将YOLOv8模型导出为ONNX格式,参考 PaddleDetection模型导出为ONNX格式教程,运行以下命令:

# 导出推理模型
python tools/export_model.py -c configs/yolov8/yolov8_s_500e_coco.yml --output_dir=output_inference -o weights=https://paddledet.bj.bcebos.com/models/yolov8_s_500e_coco.pdparams

# 安装paddle2onnx
pip install paddle2onnx

# 转换成onnx格式
paddle2onnx --model_dir output_inference/yolov8_s_500e_coco --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 11 --save_file yolov8_s_500e_coco.onnx

注意: ONNX模型目前只支持batch_size=1

FastDeploy多硬件快速部署

FastDeploy是飞桨推出的统一部署工具,支持云边端部署。目前在YOLO系列支持的部署能力如下所示。具体部署示例,可以前往FastDeploy仓库使用。

YOLOv5 YOLOv6 YOLOv7 YOLOv8 PP-YOLOE+ 部署特色
Intel CPU 支持 支持 支持 支持 支持 集成PaddleSlim一键压缩压缩,实现极致性能
NVIDIA GPU 支持 支持 支持 支持 支持 集成PaddleSlim一键压缩工具、CUDA预处理加速,实现极致性能
飞腾 CPU 支持 支持 支持 支持 支持 X86 CPU与ARM CPU无缝切换
昆仑芯 R200* 支持 支持 支持 支持 支持 无缝部署Paddle模型
昇腾310* 支持 即将支持 即将支持 即将支持 支持 无缝部署Paddle模型
算能SC7-FP300* 支持 支持 支持 支持 支持 充分发挥硬件工具链特性,实现模型快速部署
Jetson 支持 支持 支持 支持 支持 集成PaddleSlim一键压缩工具、CUDA预处理加速,实现极致性能
ARM CPU 支持 支持 支持 支持 支持 集成PaddleSlim一键压缩工具、预处理加速库FlyCV,实现极致性能
RK3588* 支持 支持 支持 支持 支持 充分发挥硬件工具链特性,实现模型快速部署
RV1126* 支持 暂不支持 暂不支持 暂不支持 支持 联合全量化实现模型端到端的优化
服务化部署 支持 暂不支持 暂不支持 暂不支持 支持 实现企业级高并发需求
视频流部署 暂不支持 暂不支持 暂不支持 暂不支持 支持 调用硬解码核,实现数据零拷贝,充分利用硬件资源

备注:

*表示:FastDeploy目前在该型号硬件上测试。通常同类型硬件上使用的是相同的软件栈,该部署能力可以延伸到同软件架栈的硬件。譬如RK3588与RK3566、RK3568相同的软件栈。

「硬件列-纵轴」链接到部署预编译包安装或部署示例,「横轴」跳转到具体部署示例。

引用