Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add WarpBatch - array process warp with single callback #651

Merged
merged 1 commit into from
Dec 17, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
88 changes: 88 additions & 0 deletions bindings/python/examples/torus_knot.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
# %%
import numpy as np
from manifold3d import *

# Creates a classic torus knot, defined as a string wrapping periodically
# around the surface of an imaginary donut. If p and q have a common
# factor then you will get multiple separate, interwoven knots. This is
# an example of using the warp() method, thus avoiding any direct
# handling of triangles.


def run():
# The number of times the thread passes through the donut hole.
p = 1
# The number of times the thread circles the donut.
q = 3
# Radius of the interior of the imaginary donut.
majorRadius = 25
# Radius of the small cross-section of the imaginary donut.
minorRadius = 10
# Radius of the small cross-section of the actual object.
threadRadius = 3.75
# Number of linear segments making up the threadRadius circle. Default is
# getCircularSegments(threadRadius).
circularSegments = -1
# Number of segments along the length of the knot. Default makes roughly
# square facets.
linearSegments = -1

# These default values recreate Matlab Knot by Emmett Lalish:
# https://www.thingiverse.com/thing:7080

kLoops = np.gcd(p, q)
pk = p / kLoops
qk = q / kLoops
n = (
circularSegments
if circularSegments > 2
else get_circular_segments(threadRadius)
)
m = linearSegments if linearSegments > 2 else n * qk * majorRadius / threadRadius

offset = 2
circle = CrossSection.circle(1, n).translate([offset, 0])

def ax_rotate(x, theta):
a, b = (x + 1) % 3, (x + 2) % 3
s, c = np.sin(theta), np.cos(theta)
m = np.zeros((len(theta), 4, 4), dtype=np.float32)
m[:, a, a], m[:, a, b] = c, s
m[:, b, a], m[:, b, b] = -s, c
m[:, x, x], m[:, 3, 3] = 1, 1
return m

def func(pts):
npts = pts.shape[0]
x, y, z = pts[:, 0], pts[:, 1], pts[:, 2]
psi = qk * np.arctan2(x, y)
theta = psi * pk / qk
x1 = np.sqrt(x * x + y * y)
phi = np.arctan2(x1 - offset, z)

v = np.zeros((npts, 4), dtype=np.float32)
v[:, 0] = threadRadius * np.cos(phi)
v[:, 2] = threadRadius * np.sin(phi)
v[:, 3] = 1
r = majorRadius + minorRadius * np.cos(theta)

m1 = ax_rotate(0, -np.arctan2(pk * minorRadius, qk * r))
m1[:, 3, 0] = minorRadius
m2 = ax_rotate(1, theta)
m2[:, 3, 0] = majorRadius
m3 = ax_rotate(2, psi)

v = v[:, None, :] @ (m1 @ m2 @ m3)
return v[:, 0, :3]

def func_single(v):
pts = np.array(v)[None, :]
pts = func(pts)
return tuple(pts[0])

return circle.revolve(int(m)).warp_batch(func)
# return circle.revolve(int(m)).warp(func_single)


if __name__ == "__main__":
run()
88 changes: 70 additions & 18 deletions bindings/python/manifold3d.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -70,38 +70,60 @@ namespace nb = nanobind;
// helper to convert std::vector<glm::vec*> to numpy
template <class T, int N, glm::qualifier Precision>
nb::ndarray<nb::numpy, T, nb::shape<nb::any, N>> to_numpy(
std::vector<glm::vec<N, T, Precision>> const &vecvec) {
glm::vec<N, T, Precision> const *begin,
glm::vec<N, T, Precision> const *end) {
// transfer ownership to PyObject
T *buffer = new T[vecvec.size() * N];
size_t nvert = end - begin;
T *buffer = new T[nvert * N];
nb::capsule mem_mgr(buffer, [](void *p) noexcept { delete[](T *) p; });
for (int i = 0; i < vecvec.size(); i++) {
for (int i = 0; i < nvert; i++) {
for (int j = 0; j < N; j++) {
buffer[i * N + j] = vecvec[i][j];
buffer[i * N + j] = begin[i][j];
}
}
return {buffer, {vecvec.size(), N}, mem_mgr};
return {buffer, {nvert, N}, mem_mgr};
}

// helper to convert std::vector<glm::vec*> to numpy
template <class T, int N, glm::qualifier Precision>
nb::ndarray<nb::numpy, T, nb::shape<nb::any, N>> to_numpy(
std::vector<glm::vec<N, T, Precision>> const &vec) {
return to_numpy(vec.data(), vec.data() + vec.size());
}

// helper to convert numpy to std::vector<glm::vec*>
template <class T, size_t N, glm::qualifier Precision = glm::defaultp>
std::vector<glm::vec<N, T, Precision>> to_glm_vector(
nb::ndarray<nb::numpy, T, nb::shape<nb::any, N>> const &arr) {
std::vector<glm::vec<N, T, Precision>> out;
out.reserve(arr.shape(0));
void to_glm_range(nb::ndarray<nb::numpy, T, nb::shape<nb::any, N>> const &arr,
glm::vec<int(N), T, Precision> *begin,
glm::vec<int(N), T, Precision> *end) {
if (arr.shape(0) != end - begin) {
throw std::runtime_error(
"received numpy.shape[0]: " + std::to_string(arr.shape(0)) +
" expected: " + std::to_string(int(end - begin)));
}
for (int i = 0; i < arr.shape(0); i++) {
out.emplace_back();
for (int j = 0; j < N; j++) {
out.back()[j] = arr(i, j);
begin[i][j] = arr(i, j);
}
}
return out;
}
// helper to convert numpy to std::vector<glm::vec*>
template <class T, size_t N, glm::qualifier Precision = glm::defaultp>
void to_glm_vector(nb::ndarray<nb::numpy, T, nb::shape<nb::any, N>> const &arr,
std::vector<glm::vec<int(N), T, Precision>> &out) {
out.resize(arr.shape(0));
to_glm_range(arr, out.data(), out.data() + out.size());
}

using namespace manifold;

typedef std::tuple<float, float> Float2;
typedef std::tuple<float, float, float> Float3;

using NumpyFloatNx2 = nb::ndarray<nb::numpy, float, nb::shape<nb::any, 2>>;
using NumpyFloatNx3 = nb::ndarray<nb::numpy, float, nb::shape<nb::any, 3>>;
using NumpyUintNx3 = nb::ndarray<nb::numpy, uint32_t, nb::shape<nb::any, 3>>;

template <typename T>
std::vector<T> toVector(const T *arr, size_t size) {
return std::vector<T>(arr, arr + size);
Expand Down Expand Up @@ -150,12 +172,10 @@ NB_MODULE(manifold3d, m) {
"triangulate",
[](std::vector<nb::ndarray<nb::numpy, float, nb::shape<nb::any, 2>>>
polys) {
std::vector<std::vector<glm::vec2>> polys_vec;
polys_vec.reserve(polys.size());
for (auto &numpy : polys) {
polys_vec.push_back(to_glm_vector(numpy));
std::vector<std::vector<glm::vec2>> polys_vec(polys.size());
for (int i = 0; i < polys.size(); i++) {
to_glm_vector(polys[i], polys_vec[i]);
}

return to_numpy(Triangulate(polys_vec));
},
"Given a list polygons (each polygon shape=(N,2) dtype=float), "
Expand Down Expand Up @@ -309,7 +329,23 @@ NB_MODULE(manifold3d, m) {
"one which overlaps, but that is not checked here, so it is up to "
"the user to choose their function with discretion."
"\n\n"
":param warpFunc: A function that modifies a given vertex position.")
":param f: A function that modifies a given vertex position.")
.def(
"warp_batch",
[](Manifold &self,
const std::function<NumpyFloatNx3(NumpyFloatNx3)> &f) {
return self.WarpBatch([&f](VecView<glm::vec3> vecs) {
NumpyFloatNx3 arr = f(to_numpy(vecs.begin(), vecs.end()));
to_glm_range(arr, vecs.begin(), vecs.end());
});
},
nb::arg("f"),
"Same as Manifold.warp but calls `f` with a "
"ndarray(shape=(N,3), dtype=float) and expects an ndarray "
"of the same shape and type in return. The input array can be "
"modified and returned if desired. "
"\n\n"
":param f: A function that modifies multiple vertex positions.")
.def(
"set_properties",
[](Manifold &self, int newNumProp,
Expand Down Expand Up @@ -979,6 +1015,22 @@ NB_MODULE(manifold3d, m) {
"intersections are not included in the result."
"\n\n"
":param warpFunc: A function that modifies a given vertex position.")
.def(
"warp_batch",
[](CrossSection &self,
const std::function<NumpyFloatNx2(NumpyFloatNx2)> &f) {
return self.WarpBatch([&f](VecView<glm::vec2> vecs) {
NumpyFloatNx2 arr = f(to_numpy(vecs.begin(), vecs.end()));
to_glm_range(arr, vecs.begin(), vecs.end());
});
},
nb::arg("f"),
"Same as CrossSection.warp but calls `f` with a "
"ndarray(shape=(N,2), dtype=float) and expects an ndarray "
"of the same shape and type in return. The input array can be "
"modified and returned if desired. "
"\n\n"
":param f: A function that modifies multiple vertex positions.")
.def("simplify", &CrossSection::Simplify, nb::arg("epsilon") = 1e-6,
"Remove vertices from the contours in this CrossSection that are "
"less than the specified distance epsilon from an imaginary line "
Expand Down
3 changes: 3 additions & 0 deletions src/cross_section/include/cross_section.h
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
#include "glm/ext/matrix_float3x2.hpp"
#include "glm/ext/vector_float2.hpp"
#include "public.h"
#include "vec_view.h"

namespace manifold {

Expand Down Expand Up @@ -97,6 +98,8 @@ class CrossSection {
CrossSection Mirror(const glm::vec2 ax) const;
CrossSection Transform(const glm::mat3x2& m) const;
CrossSection Warp(std::function<void(glm::vec2&)> warpFunc) const;
CrossSection WarpBatch(
std::function<void(VecView<glm::vec2>)> warpFunc) const;
CrossSection Simplify(double epsilon = 1e-6) const;

// Adapted from Clipper2 docs:
Expand Down
45 changes: 33 additions & 12 deletions src/cross_section/src/cross_section.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -567,21 +567,42 @@ CrossSection CrossSection::Transform(const glm::mat3x2& m) const {
*/
CrossSection CrossSection::Warp(
std::function<void(glm::vec2&)> warpFunc) const {
auto paths = GetPaths();
auto warped = C2::PathsD();
warped.reserve(paths->paths_.size());
for (auto path : paths->paths_) {
auto sz = path.size();
auto s = C2::PathD(sz);
for (int i = 0; i < sz; ++i) {
auto v = v2_of_pd(path[i]);
warpFunc(v);
s[i] = v2_to_pd(v);
return WarpBatch([&warpFunc](VecView<glm::vec2> vecs) {
for (glm::vec2& p : vecs) {
warpFunc(p);
}
});
}

/**
* Same as CrossSection::Warp but calls warpFunc with
* a VecView which is roughly equivalent to std::span
* pointing to all vec2 elements to be modified in-place
*
* @param warpFunc A function that modifies multiple vertex positions.
*/
CrossSection CrossSection::WarpBatch(
std::function<void(VecView<glm::vec2>)> warpFunc) const {
std::vector<glm::vec2> tmp_verts;
C2::PathsD paths = GetPaths()->paths_; // deep copy
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If this line the deep copy, or the for loops following?

Copy link
Contributor Author

@wrongbad wrongbad Dec 16, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I copy it up front, then use it to update in-place after the warp func. Mainly because it allocates all the right vector sizes in one simple line of code. Are you concerned with the wasted data-copy doing it this way? I could optimize it if you think the complexity is worth it.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this is fine, I guess Emmett is just not sure about where the deep copy comment belongs to (the single line or including the loop after it).

Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yeah, it kind of looked like it was just a one-line deep copy followed by a loop deep copy - I'm still not quite sure why.

Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nevermind, I think I understand now. It's all good.

for (C2::PathD const& path : paths) {
for (C2::PointD const& p : path) {
tmp_verts.push_back(v2_of_pd(p));
}
}

warpFunc(VecView<glm::vec2>(tmp_verts.data(), tmp_verts.size()));

auto cursor = tmp_verts.begin();
for (C2::PathD& path : paths) {
for (C2::PointD& p : path) {
p = v2_to_pd(*cursor);
++cursor;
}
warped.push_back(s);
}

return CrossSection(
shared_paths(C2::Union(warped, C2::FillRule::Positive, precision_)));
shared_paths(C2::Union(paths, C2::FillRule::Positive, precision_)));
}

/**
Expand Down
2 changes: 2 additions & 0 deletions src/manifold/include/manifold.h
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@

#include "cross_section.h"
#include "public.h"
#include "vec_view.h"

namespace manifold {

Expand Down Expand Up @@ -206,6 +207,7 @@ class Manifold {
Manifold Transform(const glm::mat4x3&) const;
Manifold Mirror(glm::vec3) const;
Manifold Warp(std::function<void(glm::vec3&)>) const;
Manifold WarpBatch(std::function<void(VecView<glm::vec3>)>) const;
Manifold SetProperties(
int, std::function<void(float*, glm::vec3, const float*)>) const;
Manifold CalculateCurvature(int gaussianIdx, int meanIdx) const;
Expand Down
9 changes: 8 additions & 1 deletion src/manifold/src/impl.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -719,7 +719,14 @@ void Manifold::Impl::MarkFailure(Error status) {
}

void Manifold::Impl::Warp(std::function<void(glm::vec3&)> warpFunc) {
thrust::for_each_n(thrust::host, vertPos_.begin(), NumVert(), warpFunc);
WarpBatch([&warpFunc](VecView<glm::vec3> vecs) {
thrust::for_each(thrust::host, vecs.begin(), vecs.end(), warpFunc);
});
}

void Manifold::Impl::WarpBatch(
std::function<void(VecView<glm::vec3>)> warpFunc) {
warpFunc(vertPos_.view());
CalculateBBox();
if (!IsFinite()) {
MarkFailure(Error::NonFiniteVertex);
Expand Down
1 change: 1 addition & 0 deletions src/manifold/src/impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -76,6 +76,7 @@ struct Manifold::Impl {
void Update();
void MarkFailure(Error status);
void Warp(std::function<void(glm::vec3&)> warpFunc);
void WarpBatch(std::function<void(VecView<glm::vec3>)> warpFunc);
Impl Transform(const glm::mat4x3& transform) const;
SparseIndices EdgeCollisions(const Impl& B, bool inverted = false) const;
SparseIndices VertexCollisionsZ(VecView<const glm::vec3> vertsIn,
Expand Down
14 changes: 14 additions & 0 deletions src/manifold/src/manifold.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -569,6 +569,20 @@ Manifold Manifold::Warp(std::function<void(glm::vec3&)> warpFunc) const {
return Manifold(std::make_shared<CsgLeafNode>(pImpl));
}

/**
* Same as Manifold::Warp but calls warpFunc with with
* a VecView which is roughly equivalent to std::span
* pointing to all vec3 elements to be modified in-place
*
* @param warpFunc A function that modifies multiple vertex positions.
*/
Manifold Manifold::WarpBatch(
std::function<void(VecView<glm::vec3>)> warpFunc) const {
auto pImpl = std::make_shared<Impl>(*GetCsgLeafNode().GetImpl());
pImpl->WarpBatch(warpFunc);
return Manifold(std::make_shared<CsgLeafNode>(pImpl));
}

/**
* Create a new copy of this manifold with updated vertex properties by
* supplying a function that takes the existing position and properties as
Expand Down
Loading
Loading