Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

dt-bindings: ARM: tegra: Add ASUS Transformers #3

Merged
merged 1 commit into from
Jun 1, 2020
Merged

dt-bindings: ARM: tegra: Add ASUS Transformers #3

merged 1 commit into from
Jun 1, 2020

Conversation

clamor-s
Copy link
Contributor

@clamor-s clamor-s commented Jun 1, 2020

Add a binding for the Tegra30-based ASUS Transformer Series tablet devices. This group includes Transformer Prime TF201, Transformer Pad TF300T and Transformer Infinity TF700T.

Signed-off-by: Svyatoslav Ryhel [email protected]

Add a binding for the Tegra30-based ASUS Transformer Series tablet devices. This group includes Transformer Prime TF201, Transformer Pad TF300T and Transformer Infinity TF700T.

Signed-off-by: Svyatoslav Ryhel <[email protected]>
@digetx
Copy link
Member

digetx commented Jun 1, 2020

Thanks! Looking forward to the TF200 DT :)

@digetx digetx merged commit 1e762cf into grate-driver:master Jun 1, 2020
digetx pushed a commit that referenced this pull request Jun 8, 2020
Some init systems (eg.  systemd) have init at their own paths, for
example, /usr/lib/systemd/systemd.  A compatibility symlink to one of the
hardcoded init paths is provided by another package, usually named
something like systemd-sysvcompat or similar.

Currently distro maintainers who are hands-off on the bootloader are more
or less required to include those compatibility links as part of their
base distribution, because it's hard to migrate away from them since
there's a risk some users will not get the message to set init= on the
kernel command line appropriately.

Moreover, for distributions where the init system is something the
distribution itself is opinionated about (eg.  Arch, which has systemd in
the required `base` package), we could usually reasonably configure this
ahead of time when building the distribution kernel.  However, we
currently simply don't have any way to configure the kernel to do this.
Here's an example discussion where removing sysvcompat was discussed by
distro maintainers[0].

This patch adds a new Kconfig tunable, CONFIG_DEFAULT_INIT, which if set
is tried before the hardcoded fallback list.  So the order of precedence
is now thus:

1. init= on command line (on failure: panic)
2. CONFIG_DEFAULT_INIT (on failure: try #3)
3. Hardcoded fallback list (on failure: panic)

This new config parameter will allow distribution maintainers to move away
from these compatibility links safely, without having to worry that their
users might not have the right init=.

There are also two other benefits of this over having the distribution
maintain a symlink:

1. One of the value propositions over simply having distributions
   maintain a /sbin/init symlink via a package is that it also frees
   distributions which have a preferred default, but not mandatory, init
   system from having their package manager fight with their users for
   control of /{s,}bin/init.  Instead, the distribution simply makes
   their preference known in CONFIG_DEFAULT_INIT, and if the user
   installs another init system and uninstalls the default one they can
   still make use of /{s,}bin/init and friends for their own uses. This
   makes more cases Just Work(tm) without the user having to perform
   extra configuration via init=.

2. Since before this we don't know which path the distribution actually
   _intends_ to serve init from, we don't pr_err if it is simply
   missing, and usually will just silently put the user in a /bin/sh
   shell. Now that the distribution can make a declaration of intent, we
   can be more vocal when this init system fails to launch for any
   reason, even if it's simply because no file exists at that location,
   speeding up the palaver of init/mount dependency/etc debugging a bit.

[0]: https://lists.archlinux.org/pipermail/arch-dev-public/2019-January/029435.html

Signed-off-by: Chris Down <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Cc: Greg Kroah-Hartman <[email protected]>
Cc: Masami Hiramatsu <[email protected]>
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Linus Torvalds <[email protected]>
digetx pushed a commit that referenced this pull request Jun 8, 2020
swap_info_struct si.highest_bit, si.swap_map[offset] and si.flags could
be accessed concurrently separately as noticed by KCSAN,

=== si.highest_bit ===

 write to 0xffff8d5abccdc4d4 of 4 bytes by task 5353 on cpu 24:
  swap_range_alloc+0x81/0x130
  swap_range_alloc at mm/swapfile.c:681
  scan_swap_map_slots+0x371/0xb90
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0xf2/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 read to 0xffff8d5abccdc4d4 of 4 bytes by task 6672 on cpu 70:
  scan_swap_map_slots+0x4a6/0xb90
  scan_swap_map_slots at mm/swapfile.c:892
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0xf2/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 Reported by Kernel Concurrency Sanitizer on:
 CPU: 70 PID: 6672 Comm: oom01 Tainted: G        W    L 5.5.0-next-20200205+ #3
 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019

=== si.swap_map[offset] ===

 write to 0xffffbc370c29a64c of 1 bytes by task 6856 on cpu 86:
  __swap_entry_free_locked+0x8c/0x100
  __swap_entry_free_locked at mm/swapfile.c:1209 (discriminator 4)
  __swap_entry_free.constprop.20+0x69/0xb0
  free_swap_and_cache+0x53/0xa0
  unmap_page_range+0x7f8/0x1d70
  unmap_single_vma+0xcd/0x170
  unmap_vmas+0x18b/0x220
  exit_mmap+0xee/0x220
  mmput+0x10e/0x270
  do_exit+0x59b/0xf40
  do_group_exit+0x8b/0x180

 read to 0xffffbc370c29a64c of 1 bytes by task 6855 on cpu 20:
  _swap_info_get+0x81/0xa0
  _swap_info_get at mm/swapfile.c:1140
  free_swap_and_cache+0x40/0xa0
  unmap_page_range+0x7f8/0x1d70
  unmap_single_vma+0xcd/0x170
  unmap_vmas+0x18b/0x220
  exit_mmap+0xee/0x220
  mmput+0x10e/0x270
  do_exit+0x59b/0xf40
  do_group_exit+0x8b/0x180

=== si.flags ===

 write to 0xffff956c8fc6c400 of 8 bytes by task 6087 on cpu 23:
  scan_swap_map_slots+0x6fe/0xb50
  scan_swap_map_slots at mm/swapfile.c:887
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0x377/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 read to 0xffff956c8fc6c400 of 8 bytes by task 6207 on cpu 63:
  _swap_info_get+0x41/0xa0
  __swap_info_get at mm/swapfile.c:1114
  put_swap_page+0x84/0x490
  __remove_mapping+0x384/0x5f0
  shrink_page_list+0xff1/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

The writes are under si->lock but the reads are not. For si.highest_bit
and si.swap_map[offset], data race could trigger logic bugs, so fix them
by having WRITE_ONCE() for the writes and READ_ONCE() for the reads
except those isolated reads where they compare against zero which a data
race would cause no harm. Thus, annotate them as intentional data races
using the data_race() macro.

For si.flags, the readers are only interested in a single bit where a
data race there would cause no issue there.

Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Qian Cai <[email protected]>
Cc: Marco Elver <[email protected]>
Cc: Hugh Dickins <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
digetx pushed a commit that referenced this pull request Jun 9, 2020
swap_info_struct si.highest_bit, si.swap_map[offset] and si.flags could
be accessed concurrently separately as noticed by KCSAN,

=== si.highest_bit ===

 write to 0xffff8d5abccdc4d4 of 4 bytes by task 5353 on cpu 24:
  swap_range_alloc+0x81/0x130
  swap_range_alloc at mm/swapfile.c:681
  scan_swap_map_slots+0x371/0xb90
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0xf2/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 read to 0xffff8d5abccdc4d4 of 4 bytes by task 6672 on cpu 70:
  scan_swap_map_slots+0x4a6/0xb90
  scan_swap_map_slots at mm/swapfile.c:892
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0xf2/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 Reported by Kernel Concurrency Sanitizer on:
 CPU: 70 PID: 6672 Comm: oom01 Tainted: G        W    L 5.5.0-next-20200205+ #3
 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019

=== si.swap_map[offset] ===

 write to 0xffffbc370c29a64c of 1 bytes by task 6856 on cpu 86:
  __swap_entry_free_locked+0x8c/0x100
  __swap_entry_free_locked at mm/swapfile.c:1209 (discriminator 4)
  __swap_entry_free.constprop.20+0x69/0xb0
  free_swap_and_cache+0x53/0xa0
  unmap_page_range+0x7f8/0x1d70
  unmap_single_vma+0xcd/0x170
  unmap_vmas+0x18b/0x220
  exit_mmap+0xee/0x220
  mmput+0x10e/0x270
  do_exit+0x59b/0xf40
  do_group_exit+0x8b/0x180

 read to 0xffffbc370c29a64c of 1 bytes by task 6855 on cpu 20:
  _swap_info_get+0x81/0xa0
  _swap_info_get at mm/swapfile.c:1140
  free_swap_and_cache+0x40/0xa0
  unmap_page_range+0x7f8/0x1d70
  unmap_single_vma+0xcd/0x170
  unmap_vmas+0x18b/0x220
  exit_mmap+0xee/0x220
  mmput+0x10e/0x270
  do_exit+0x59b/0xf40
  do_group_exit+0x8b/0x180

=== si.flags ===

 write to 0xffff956c8fc6c400 of 8 bytes by task 6087 on cpu 23:
  scan_swap_map_slots+0x6fe/0xb50
  scan_swap_map_slots at mm/swapfile.c:887
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0x377/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 read to 0xffff956c8fc6c400 of 8 bytes by task 6207 on cpu 63:
  _swap_info_get+0x41/0xa0
  __swap_info_get at mm/swapfile.c:1114
  put_swap_page+0x84/0x490
  __remove_mapping+0x384/0x5f0
  shrink_page_list+0xff1/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

The writes are under si->lock but the reads are not. For si.highest_bit
and si.swap_map[offset], data race could trigger logic bugs, so fix them
by having WRITE_ONCE() for the writes and READ_ONCE() for the reads
except those isolated reads where they compare against zero which a data
race would cause no harm. Thus, annotate them as intentional data races
using the data_race() macro.

For si.flags, the readers are only interested in a single bit where a
data race there would cause no issue there.

Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Qian Cai <[email protected]>
Cc: Marco Elver <[email protected]>
Cc: Hugh Dickins <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
digetx pushed a commit that referenced this pull request Jun 10, 2020
swap_info_struct si.highest_bit, si.swap_map[offset] and si.flags could
be accessed concurrently separately as noticed by KCSAN,

=== si.highest_bit ===

 write to 0xffff8d5abccdc4d4 of 4 bytes by task 5353 on cpu 24:
  swap_range_alloc+0x81/0x130
  swap_range_alloc at mm/swapfile.c:681
  scan_swap_map_slots+0x371/0xb90
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0xf2/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 read to 0xffff8d5abccdc4d4 of 4 bytes by task 6672 on cpu 70:
  scan_swap_map_slots+0x4a6/0xb90
  scan_swap_map_slots at mm/swapfile.c:892
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0xf2/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 Reported by Kernel Concurrency Sanitizer on:
 CPU: 70 PID: 6672 Comm: oom01 Tainted: G        W    L 5.5.0-next-20200205+ #3
 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019

=== si.swap_map[offset] ===

 write to 0xffffbc370c29a64c of 1 bytes by task 6856 on cpu 86:
  __swap_entry_free_locked+0x8c/0x100
  __swap_entry_free_locked at mm/swapfile.c:1209 (discriminator 4)
  __swap_entry_free.constprop.20+0x69/0xb0
  free_swap_and_cache+0x53/0xa0
  unmap_page_range+0x7f8/0x1d70
  unmap_single_vma+0xcd/0x170
  unmap_vmas+0x18b/0x220
  exit_mmap+0xee/0x220
  mmput+0x10e/0x270
  do_exit+0x59b/0xf40
  do_group_exit+0x8b/0x180

 read to 0xffffbc370c29a64c of 1 bytes by task 6855 on cpu 20:
  _swap_info_get+0x81/0xa0
  _swap_info_get at mm/swapfile.c:1140
  free_swap_and_cache+0x40/0xa0
  unmap_page_range+0x7f8/0x1d70
  unmap_single_vma+0xcd/0x170
  unmap_vmas+0x18b/0x220
  exit_mmap+0xee/0x220
  mmput+0x10e/0x270
  do_exit+0x59b/0xf40
  do_group_exit+0x8b/0x180

=== si.flags ===

 write to 0xffff956c8fc6c400 of 8 bytes by task 6087 on cpu 23:
  scan_swap_map_slots+0x6fe/0xb50
  scan_swap_map_slots at mm/swapfile.c:887
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0x377/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 read to 0xffff956c8fc6c400 of 8 bytes by task 6207 on cpu 63:
  _swap_info_get+0x41/0xa0
  __swap_info_get at mm/swapfile.c:1114
  put_swap_page+0x84/0x490
  __remove_mapping+0x384/0x5f0
  shrink_page_list+0xff1/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

The writes are under si->lock but the reads are not. For si.highest_bit
and si.swap_map[offset], data race could trigger logic bugs, so fix them
by having WRITE_ONCE() for the writes and READ_ONCE() for the reads
except those isolated reads where they compare against zero which a data
race would cause no harm. Thus, annotate them as intentional data races
using the data_race() macro.

For si.flags, the readers are only interested in a single bit where a
data race there would cause no issue there.

Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Qian Cai <[email protected]>
Cc: Marco Elver <[email protected]>
Cc: Hugh Dickins <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
digetx pushed a commit that referenced this pull request Jun 13, 2020
The first version of Clang that supports -tsan-distinguish-volatile will
be able to support KCSAN. The first Clang release to do so, will be
Clang 11. This is due to satisfying all the following requirements:

1. Never emit calls to __tsan_func_{entry,exit}.

2. __no_kcsan functions should not call anything, not even
   kcsan_{enable,disable}_current(), when using __{READ,WRITE}_ONCE => Requires
   leaving them plain!

3. Support atomic_{read,set}*() with KCSAN, which rely on
   arch_atomic_{read,set}*() using __{READ,WRITE}_ONCE() => Because of
   #2, rely on Clang 11's -tsan-distinguish-volatile support. We will
   double-instrument atomic_{read,set}*(), but that's reasonable given
   it's still lower cost than the data_race() variant due to avoiding 2
   extra calls (kcsan_{en,dis}able_current() calls).

4. __always_inline functions inlined into __no_kcsan functions are never
   instrumented.

5. __always_inline functions inlined into instrumented functions are
   instrumented.

6. __no_kcsan_or_inline functions may be inlined into __no_kcsan functions =>
   Implies leaving 'noinline' off of __no_kcsan_or_inline.

7. Because of #6, __no_kcsan and __no_kcsan_or_inline functions should never be
   spuriously inlined into instrumented functions, causing the accesses of the
   __no_kcsan function to be instrumented.

Older versions of Clang do not satisfy #3. The latest GCC currently
doesn't support at least #1, #3, and #7.

Signed-off-by: Marco Elver <[email protected]>
Signed-off-by: Borislav Petkov <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Acked-by: Peter Zijlstra (Intel) <[email protected]>
Acked-by: Will Deacon <[email protected]>
Link: https://lkml.kernel.org/r/CANpmjNMTsY_8241bS7=XAfqvZHFLrVEkv_uM4aDUWE_kh3Rvbw@mail.gmail.com
Link: https://lkml.kernel.org/r/[email protected]
digetx pushed a commit that referenced this pull request Jun 13, 2020
swap_info_struct si.highest_bit, si.swap_map[offset] and si.flags could
be accessed concurrently separately as noticed by KCSAN,

=== si.highest_bit ===

 write to 0xffff8d5abccdc4d4 of 4 bytes by task 5353 on cpu 24:
  swap_range_alloc+0x81/0x130
  swap_range_alloc at mm/swapfile.c:681
  scan_swap_map_slots+0x371/0xb90
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0xf2/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 read to 0xffff8d5abccdc4d4 of 4 bytes by task 6672 on cpu 70:
  scan_swap_map_slots+0x4a6/0xb90
  scan_swap_map_slots at mm/swapfile.c:892
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0xf2/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 Reported by Kernel Concurrency Sanitizer on:
 CPU: 70 PID: 6672 Comm: oom01 Tainted: G        W    L 5.5.0-next-20200205+ #3
 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019

=== si.swap_map[offset] ===

 write to 0xffffbc370c29a64c of 1 bytes by task 6856 on cpu 86:
  __swap_entry_free_locked+0x8c/0x100
  __swap_entry_free_locked at mm/swapfile.c:1209 (discriminator 4)
  __swap_entry_free.constprop.20+0x69/0xb0
  free_swap_and_cache+0x53/0xa0
  unmap_page_range+0x7f8/0x1d70
  unmap_single_vma+0xcd/0x170
  unmap_vmas+0x18b/0x220
  exit_mmap+0xee/0x220
  mmput+0x10e/0x270
  do_exit+0x59b/0xf40
  do_group_exit+0x8b/0x180

 read to 0xffffbc370c29a64c of 1 bytes by task 6855 on cpu 20:
  _swap_info_get+0x81/0xa0
  _swap_info_get at mm/swapfile.c:1140
  free_swap_and_cache+0x40/0xa0
  unmap_page_range+0x7f8/0x1d70
  unmap_single_vma+0xcd/0x170
  unmap_vmas+0x18b/0x220
  exit_mmap+0xee/0x220
  mmput+0x10e/0x270
  do_exit+0x59b/0xf40
  do_group_exit+0x8b/0x180

=== si.flags ===

 write to 0xffff956c8fc6c400 of 8 bytes by task 6087 on cpu 23:
  scan_swap_map_slots+0x6fe/0xb50
  scan_swap_map_slots at mm/swapfile.c:887
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0x377/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 read to 0xffff956c8fc6c400 of 8 bytes by task 6207 on cpu 63:
  _swap_info_get+0x41/0xa0
  __swap_info_get at mm/swapfile.c:1114
  put_swap_page+0x84/0x490
  __remove_mapping+0x384/0x5f0
  shrink_page_list+0xff1/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

The writes are under si->lock but the reads are not. For si.highest_bit
and si.swap_map[offset], data race could trigger logic bugs, so fix them
by having WRITE_ONCE() for the writes and READ_ONCE() for the reads
except those isolated reads where they compare against zero which a data
race would cause no harm. Thus, annotate them as intentional data races
using the data_race() macro.

For si.flags, the readers are only interested in a single bit where a
data race there would cause no issue there.

Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Qian Cai <[email protected]>
Cc: Marco Elver <[email protected]>
Cc: Hugh Dickins <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
digetx pushed a commit that referenced this pull request Jun 17, 2020
Stalls are quite frequent with recent kernels.  When the stall is detected by rcu_sched, we
get a backtrace similar to the following:

rcu: INFO: rcu_sched self-detected stall on CPU
rcu:    0-...!: (5998 ticks this GP) idle=3a6/1/0x4000000000000002 softirq=8356938/8356939 fqs=2
        (t=6000 jiffies g=8985785 q=391)
rcu: rcu_sched kthread starved for 5992 jiffies! g8985785 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x0 ->cpu=0
rcu: RCU grace-period kthread stack dump:
rcu_sched       R  running task        0    10      2 0x00000000
Backtrace:

Task dump for CPU 0:
collect2        R  running task        0 16562  16561 0x00000014
Backtrace:
 [<000000004017913c>] show_stack+0x44/0x60
 [<00000000401df694>] sched_show_task.part.77+0xf4/0x180
 [<00000000401e70e8>] dump_cpu_task+0x68/0x80
 [<0000000040230a58>] rcu_sched_clock_irq+0x708/0xae0
 [<0000000040237670>] update_process_times+0x58/0xb8
 [<00000000407dc39c>] timer_interrupt+0xa4/0x110
 [<000000004021af30>] __handle_irq_event_percpu+0xb8/0x228
 [<000000004021b0d4>] handle_irq_event_percpu+0x34/0x98
 [<00000000402225b8>] handle_percpu_irq+0xa8/0xe8
 [<000000004021a05c>] generic_handle_irq+0x54/0x70
 [<0000000040180340>] call_on_stack+0x18/0x24
 [<000000004017a63c>] execute_on_irq_stack+0x5c/0xa8
 [<000000004017b76c>] do_cpu_irq_mask+0x2dc/0x410
 [<000000004017f074>] intr_return+0x0/0xc

However, this doesn't provide any information as to the cause.  I enabled CONFIG_SOFTLOCKUP_DETECTOR
and I caught the following stall:

watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [cc1:22803]
Modules linked in: dm_mod dax binfmt_misc ext4 crc16 jbd2 ext2 mbcache sg ipmi_watchdog ipmi_si ipmi_poweroff ipmi_devintf ipmi_msghandler nfsd
ip_tables x_tables ipv6 autofs4 xfs libcrc32c crc32c_generic raid10 raid1 raid0 multipath linear md_mod ses enclosure sd_mod scsi_transport_sas
t10_pi sr_mod cdrom ata_generic uas usb_storage pata_cmd64x libata ohci_pci ehci_pci ohci_hcd sym53c8xx ehci_hcd scsi_transport_spi tg3 usbcore
scsi_mod usb_common
CPU: 0 PID: 22803 Comm: cc1 Not tainted 5.6.17+ #3
Hardware name: 9000/800/rp3440

     YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI
PSW: 00001000000001001111111100001111 Not tainted
r00-03  000000ff0804ff0f 0000000040891dc0 000000004037d1c4 000000006d5e8890
r04-07  000000004086fdc0 0000000040ab31ac 000000000004e99a 0000000000001f20
r08-11  0000000040b24710 000000006d5e8488 0000000040a1d280 000000006d5e89b0
r12-15  000000006d5e88c4 00000001802c2cb8 000000003c812825 0000004122eb4d18
r16-19  0000000040b26630 000000006d5e8898 000000000001d330 000000006d5e88c0
r20-23  000000000800000f 0000000a0ad24270 b6683633143fce3c 0000004122eb4d54
r24-27  000000006d5e88c4 000000006d5e8488 00000001802c2cb8 000000004086fdc0
r28-31  0000004122d57b69 000000006d5e89b0 000000006d5e89e0 000000006d5e8000
sr00-03  000000000c749000 0000000000000000 0000000000000000 000000000c749000
sr04-07  0000000000000000 0000000000000000 0000000000000000 0000000000000000

IASQ: 0000000000000000 0000000000000000 IAOQ: 000000004037d414 000000004037d418
 IIR: 0e0010dc    ISR: 00000041042d63f0  IOR: 000000004086fdc0
 CPU:        0   CR30: 000000006d5e8000 CR31: ffffffffffffefff
 ORIG_R28: 000000004086fdc0
 IAOQ[0]: d_alloc_parallel+0x384/0x688
 IAOQ[1]: d_alloc_parallel+0x388/0x688
 RP(r2): d_alloc_parallel+0x134/0x688
Backtrace:
 [<000000004036974c>] __lookup_slow+0xa4/0x200
 [<0000000040369fc8>] walk_component+0x288/0x458
 [<000000004036a9a0>] path_lookupat+0x88/0x198
 [<000000004036e748>] filename_lookup+0xa0/0x168
 [<000000004036e95c>] user_path_at_empty+0x64/0x80
 [<000000004035d93c>] vfs_statx+0x104/0x158
 [<000000004035dfcc>] __do_sys_lstat64+0x44/0x80
 [<000000004035e5a0>] sys_lstat64+0x20/0x38
 [<0000000040180054>] syscall_exit+0x0/0x14

The code was stuck in this loop in d_alloc_parallel:

    4037d414:   0e 00 10 dc     ldd 0(r16),ret0
    4037d418:   c7 fc 5f ed     bb,< ret0,1f,4037d414 <d_alloc_parallel+0x384>
    4037d41c:   08 00 02 40     nop

This is the inner loop of bit_spin_lock which is called by hlist_bl_unlock in d_alloc_parallel:

static inline void bit_spin_lock(int bitnum, unsigned long *addr)
{
        /*
         * Assuming the lock is uncontended, this never enters
         * the body of the outer loop. If it is contended, then
         * within the inner loop a non-atomic test is used to
         * busywait with less bus contention for a good time to
         * attempt to acquire the lock bit.
         */
        preempt_disable();
#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
        while (unlikely(test_and_set_bit_lock(bitnum, addr))) {
                preempt_enable();
                do {
                        cpu_relax();
                } while (test_bit(bitnum, addr));
                preempt_disable();
        }
#endif
        __acquire(bitlock);
}

test_and_set_bit_lock() looks like this:

static inline int test_and_set_bit_lock(unsigned int nr,
                                        volatile unsigned long *p)
{
        long old;
        unsigned long mask = BIT_MASK(nr);

        p += BIT_WORD(nr);
        if (READ_ONCE(*p) & mask)
                return 1;

        old = atomic_long_fetch_or_acquire(mask, (atomic_long_t *)p);
        return !!(old & mask);
}

Note the volatile keyword is dropped in casting p to atomic_long_t *.

Our current implementation of atomic_fetch_##op is:

static __inline__ int atomic_fetch_##op(int i, atomic_t *v)             \
{                                                                       \
        unsigned long flags;                                            \
        int ret;                                                        \
                                                                        \
        _atomic_spin_lock_irqsave(v, flags);                            \
        ret = v->counter;                                               \
        v->counter c_op i;                                              \
        _atomic_spin_unlock_irqrestore(v, flags);                       \
                                                                        \
        return ret;                                                     \
}

Note the pointer v is not volatile.  Although _atomic_spin_lock_irqsave clobbers memory,
I realized that gcc had optimized the code in the spinlock.  Essentially, this occurs in
the following situation:

t1 = *p;
if (t1)
  do_something1;
_atomic_spin_lock_irqsave();
t2 = *p
if (t2)
  do_something2;

The fix is to use a volatile pointer for the accesses in spinlocks.  This prevents gcc from
optimizing the accesses.

I have now run 5.6.1[78] kernels for about 4 days without a stall or any other obvious kernel issue.

Signed-off-by: Dave Anglin <[email protected]>
Signed-off-by: Helge Deller <[email protected]>
digetx pushed a commit that referenced this pull request Jun 17, 2020
swap_info_struct si.highest_bit, si.swap_map[offset] and si.flags could
be accessed concurrently separately as noticed by KCSAN,

=== si.highest_bit ===

 write to 0xffff8d5abccdc4d4 of 4 bytes by task 5353 on cpu 24:
  swap_range_alloc+0x81/0x130
  swap_range_alloc at mm/swapfile.c:681
  scan_swap_map_slots+0x371/0xb90
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0xf2/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 read to 0xffff8d5abccdc4d4 of 4 bytes by task 6672 on cpu 70:
  scan_swap_map_slots+0x4a6/0xb90
  scan_swap_map_slots at mm/swapfile.c:892
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0xf2/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 Reported by Kernel Concurrency Sanitizer on:
 CPU: 70 PID: 6672 Comm: oom01 Tainted: G        W    L 5.5.0-next-20200205+ #3
 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019

=== si.swap_map[offset] ===

 write to 0xffffbc370c29a64c of 1 bytes by task 6856 on cpu 86:
  __swap_entry_free_locked+0x8c/0x100
  __swap_entry_free_locked at mm/swapfile.c:1209 (discriminator 4)
  __swap_entry_free.constprop.20+0x69/0xb0
  free_swap_and_cache+0x53/0xa0
  unmap_page_range+0x7f8/0x1d70
  unmap_single_vma+0xcd/0x170
  unmap_vmas+0x18b/0x220
  exit_mmap+0xee/0x220
  mmput+0x10e/0x270
  do_exit+0x59b/0xf40
  do_group_exit+0x8b/0x180

 read to 0xffffbc370c29a64c of 1 bytes by task 6855 on cpu 20:
  _swap_info_get+0x81/0xa0
  _swap_info_get at mm/swapfile.c:1140
  free_swap_and_cache+0x40/0xa0
  unmap_page_range+0x7f8/0x1d70
  unmap_single_vma+0xcd/0x170
  unmap_vmas+0x18b/0x220
  exit_mmap+0xee/0x220
  mmput+0x10e/0x270
  do_exit+0x59b/0xf40
  do_group_exit+0x8b/0x180

=== si.flags ===

 write to 0xffff956c8fc6c400 of 8 bytes by task 6087 on cpu 23:
  scan_swap_map_slots+0x6fe/0xb50
  scan_swap_map_slots at mm/swapfile.c:887
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0x377/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 read to 0xffff956c8fc6c400 of 8 bytes by task 6207 on cpu 63:
  _swap_info_get+0x41/0xa0
  __swap_info_get at mm/swapfile.c:1114
  put_swap_page+0x84/0x490
  __remove_mapping+0x384/0x5f0
  shrink_page_list+0xff1/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

The writes are under si->lock but the reads are not. For si.highest_bit
and si.swap_map[offset], data race could trigger logic bugs, so fix them
by having WRITE_ONCE() for the writes and READ_ONCE() for the reads
except those isolated reads where they compare against zero which a data
race would cause no harm. Thus, annotate them as intentional data races
using the data_race() macro.

For si.flags, the readers are only interested in a single bit where a
data race there would cause no issue there.

Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Qian Cai <[email protected]>
Cc: Marco Elver <[email protected]>
Cc: Hugh Dickins <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
digetx pushed a commit that referenced this pull request Jun 28, 2020
Currently, if a bpf program has more than one subprograms, each program will be
jitted separately. For programs with bpf-to-bpf calls the
prog->aux->num_exentries is not setup properly. For example, with
bpf_iter_netlink.c modified to force one function to be not inlined and with
CONFIG_BPF_JIT_ALWAYS_ON the following error is seen:
   $ ./test_progs -n 3/3
   ...
   libbpf: failed to load program 'iter/netlink'
   libbpf: failed to load object 'bpf_iter_netlink'
   libbpf: failed to load BPF skeleton 'bpf_iter_netlink': -4007
   test_netlink:FAIL:bpf_iter_netlink__open_and_load skeleton open_and_load failed
   #3/3 netlink:FAIL
The dmesg shows the following errors:
   ex gen bug
which is triggered by the following code in arch/x86/net/bpf_jit_comp.c:
   if (excnt >= bpf_prog->aux->num_exentries) {
     pr_err("ex gen bug\n");
     return -EFAULT;
   }

This patch fixes the issue by computing proper num_exentries for each
subprogram before calling JIT.

Signed-off-by: Yonghong Song <[email protected]>
Signed-off-by: Alexei Starovoitov <[email protected]>
digetx pushed a commit that referenced this pull request Jun 28, 2020
Added tcp{4,6} and udp{4,6} bpf programs into test_progs
selftest so that they at least can load successfully.
  $ ./test_progs -n 3
  ...
  #3/7 tcp4:OK
  #3/8 tcp6:OK
  #3/9 udp4:OK
  #3/10 udp6:OK
  ...
  #3 bpf_iter:OK
  Summary: 1/16 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Yonghong Song <[email protected]>
Signed-off-by: Alexei Starovoitov <[email protected]>
Acked-by: Andrii Nakryiko <[email protected]>
Acked-by: Martin KaFai Lau <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
digetx pushed a commit that referenced this pull request Jun 28, 2020
[  150.887733] ======================================================
[  150.893903] WARNING: possible circular locking dependency detected
[  150.905917] ------------------------------------------------------
[  150.912129] kfdtest/4081 is trying to acquire lock:
[  150.917002] ffff8f7f3762e118 (&mm->mmap_sem#2){++++}, at:
                                 __might_fault+0x3e/0x90
[  150.924490]
               but task is already holding lock:
[  150.930320] ffff8f7f49d229e8 (&dqm->lock_hidden){+.+.}, at:
                                destroy_queue_cpsch+0x29/0x210 [amdgpu]
[  150.939432]
               which lock already depends on the new lock.

[  150.947603]
               the existing dependency chain (in reverse order) is:
[  150.955074]
               -> #3 (&dqm->lock_hidden){+.+.}:
[  150.960822]        __mutex_lock+0xa1/0x9f0
[  150.964996]        evict_process_queues_cpsch+0x22/0x120 [amdgpu]
[  150.971155]        kfd_process_evict_queues+0x3b/0xc0 [amdgpu]
[  150.977054]        kgd2kfd_quiesce_mm+0x25/0x60 [amdgpu]
[  150.982442]        amdgpu_amdkfd_evict_userptr+0x35/0x70 [amdgpu]
[  150.988615]        amdgpu_mn_invalidate_hsa+0x41/0x60 [amdgpu]
[  150.994448]        __mmu_notifier_invalidate_range_start+0xa4/0x240
[  151.000714]        copy_page_range+0xd70/0xd80
[  151.005159]        dup_mm+0x3ca/0x550
[  151.008816]        copy_process+0x1bdc/0x1c70
[  151.013183]        _do_fork+0x76/0x6c0
[  151.016929]        __x64_sys_clone+0x8c/0xb0
[  151.021201]        do_syscall_64+0x4a/0x1d0
[  151.025404]        entry_SYSCALL_64_after_hwframe+0x49/0xbe
[  151.030977]
               -> #2 (&adev->notifier_lock){+.+.}:
[  151.036993]        __mutex_lock+0xa1/0x9f0
[  151.041168]        amdgpu_mn_invalidate_hsa+0x30/0x60 [amdgpu]
[  151.047019]        __mmu_notifier_invalidate_range_start+0xa4/0x240
[  151.053277]        copy_page_range+0xd70/0xd80
[  151.057722]        dup_mm+0x3ca/0x550
[  151.061388]        copy_process+0x1bdc/0x1c70
[  151.065748]        _do_fork+0x76/0x6c0
[  151.069499]        __x64_sys_clone+0x8c/0xb0
[  151.073765]        do_syscall_64+0x4a/0x1d0
[  151.077952]        entry_SYSCALL_64_after_hwframe+0x49/0xbe
[  151.083523]
               -> #1 (mmu_notifier_invalidate_range_start){+.+.}:
[  151.090833]        change_protection+0x802/0xab0
[  151.095448]        mprotect_fixup+0x187/0x2d0
[  151.099801]        setup_arg_pages+0x124/0x250
[  151.104251]        load_elf_binary+0x3a4/0x1464
[  151.108781]        search_binary_handler+0x6c/0x210
[  151.113656]        __do_execve_file.isra.40+0x7f7/0xa50
[  151.118875]        do_execve+0x21/0x30
[  151.122632]        call_usermodehelper_exec_async+0x17e/0x190
[  151.128393]        ret_from_fork+0x24/0x30
[  151.132489]
               -> #0 (&mm->mmap_sem#2){++++}:
[  151.138064]        __lock_acquire+0x11a1/0x1490
[  151.142597]        lock_acquire+0x90/0x180
[  151.146694]        __might_fault+0x68/0x90
[  151.150879]        read_sdma_queue_counter+0x5f/0xb0 [amdgpu]
[  151.156693]        update_sdma_queue_past_activity_stats+0x3b/0x90 [amdgpu]
[  151.163725]        destroy_queue_cpsch+0x1ae/0x210 [amdgpu]
[  151.169373]        pqm_destroy_queue+0xf0/0x250 [amdgpu]
[  151.174762]        kfd_ioctl_destroy_queue+0x32/0x70 [amdgpu]
[  151.180577]        kfd_ioctl+0x223/0x400 [amdgpu]
[  151.185284]        ksys_ioctl+0x8f/0xb0
[  151.189118]        __x64_sys_ioctl+0x16/0x20
[  151.193389]        do_syscall_64+0x4a/0x1d0
[  151.197569]        entry_SYSCALL_64_after_hwframe+0x49/0xbe
[  151.203141]
               other info that might help us debug this:

[  151.211140] Chain exists of:
                 &mm->mmap_sem#2 --> &adev->notifier_lock --> &dqm->lock_hidden

[  151.222535]  Possible unsafe locking scenario:

[  151.228447]        CPU0                    CPU1
[  151.232971]        ----                    ----
[  151.237502]   lock(&dqm->lock_hidden);
[  151.241254]                                lock(&adev->notifier_lock);
[  151.247774]                                lock(&dqm->lock_hidden);
[  151.254038]   lock(&mm->mmap_sem#2);

This commit fixes the warning by ensuring get_user() is not called
while reading SDMA stats with dqm_lock held as get_user() could cause a
page fault which leads to the circular locking scenario.

Signed-off-by: Mukul Joshi <[email protected]>
Reviewed-by: Felix Kuehling <[email protected]>
Signed-off-by: Alex Deucher <[email protected]>
digetx pushed a commit that referenced this pull request Jun 28, 2020
swap_info_struct si.highest_bit, si.swap_map[offset] and si.flags could
be accessed concurrently separately as noticed by KCSAN,

=== si.highest_bit ===

 write to 0xffff8d5abccdc4d4 of 4 bytes by task 5353 on cpu 24:
  swap_range_alloc+0x81/0x130
  swap_range_alloc at mm/swapfile.c:681
  scan_swap_map_slots+0x371/0xb90
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0xf2/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 read to 0xffff8d5abccdc4d4 of 4 bytes by task 6672 on cpu 70:
  scan_swap_map_slots+0x4a6/0xb90
  scan_swap_map_slots at mm/swapfile.c:892
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0xf2/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 Reported by Kernel Concurrency Sanitizer on:
 CPU: 70 PID: 6672 Comm: oom01 Tainted: G        W    L 5.5.0-next-20200205+ #3
 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019

=== si.swap_map[offset] ===

 write to 0xffffbc370c29a64c of 1 bytes by task 6856 on cpu 86:
  __swap_entry_free_locked+0x8c/0x100
  __swap_entry_free_locked at mm/swapfile.c:1209 (discriminator 4)
  __swap_entry_free.constprop.20+0x69/0xb0
  free_swap_and_cache+0x53/0xa0
  unmap_page_range+0x7f8/0x1d70
  unmap_single_vma+0xcd/0x170
  unmap_vmas+0x18b/0x220
  exit_mmap+0xee/0x220
  mmput+0x10e/0x270
  do_exit+0x59b/0xf40
  do_group_exit+0x8b/0x180

 read to 0xffffbc370c29a64c of 1 bytes by task 6855 on cpu 20:
  _swap_info_get+0x81/0xa0
  _swap_info_get at mm/swapfile.c:1140
  free_swap_and_cache+0x40/0xa0
  unmap_page_range+0x7f8/0x1d70
  unmap_single_vma+0xcd/0x170
  unmap_vmas+0x18b/0x220
  exit_mmap+0xee/0x220
  mmput+0x10e/0x270
  do_exit+0x59b/0xf40
  do_group_exit+0x8b/0x180

=== si.flags ===

 write to 0xffff956c8fc6c400 of 8 bytes by task 6087 on cpu 23:
  scan_swap_map_slots+0x6fe/0xb50
  scan_swap_map_slots at mm/swapfile.c:887
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0x377/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 read to 0xffff956c8fc6c400 of 8 bytes by task 6207 on cpu 63:
  _swap_info_get+0x41/0xa0
  __swap_info_get at mm/swapfile.c:1114
  put_swap_page+0x84/0x490
  __remove_mapping+0x384/0x5f0
  shrink_page_list+0xff1/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

The writes are under si->lock but the reads are not. For si.highest_bit
and si.swap_map[offset], data race could trigger logic bugs, so fix them
by having WRITE_ONCE() for the writes and READ_ONCE() for the reads
except those isolated reads where they compare against zero which a data
race would cause no harm. Thus, annotate them as intentional data races
using the data_race() macro.

For si.flags, the readers are only interested in a single bit where a
data race there would cause no issue there.

Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Qian Cai <[email protected]>
Cc: Marco Elver <[email protected]>
Cc: Hugh Dickins <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
digetx pushed a commit that referenced this pull request Jul 1, 2020
The mpath disk node takes a reference on the request mpath
request queue when adding live path to the mpath gendisk.
However if we connected to an inaccessible path device_add_disk
is not called, so if we disconnect and remove the mpath gendisk
we endup putting an reference on the request queue that was
never taken [1].

Fix that to check if we ever added a live path (using
NVME_NS_HEAD_HAS_DISK flag) and if not, clear the disk->queue
reference.

[1]:
------------[ cut here ]------------
refcount_t: underflow; use-after-free.
WARNING: CPU: 1 PID: 1372 at lib/refcount.c:28 refcount_warn_saturate+0xa6/0xf0
CPU: 1 PID: 1372 Comm: nvme Tainted: G           O      5.7.0-rc2+ #3
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1 04/01/2014
RIP: 0010:refcount_warn_saturate+0xa6/0xf0
RSP: 0018:ffffb29e8053bdc0 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffff8b7a2f4fc060 RCX: 0000000000000007
RDX: 0000000000000007 RSI: 0000000000000092 RDI: ffff8b7a3ec99980
RBP: ffff8b7a2f4fc000 R08: 00000000000002e1 R09: 0000000000000004
R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000000
R13: fffffffffffffff2 R14: ffffb29e8053bf08 R15: ffff8b7a320e2da0
FS:  00007f135d4ca800(0000) GS:ffff8b7a3ec80000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005651178c0c30 CR3: 000000003b650005 CR4: 0000000000360ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
 disk_release+0xa2/0xc0
 device_release+0x28/0x80
 kobject_put+0xa5/0x1b0
 nvme_put_ns_head+0x26/0x70 [nvme_core]
 nvme_put_ns+0x30/0x60 [nvme_core]
 nvme_remove_namespaces+0x9b/0xe0 [nvme_core]
 nvme_do_delete_ctrl+0x43/0x5c [nvme_core]
 nvme_sysfs_delete.cold+0x8/0xd [nvme_core]
 kernfs_fop_write+0xc1/0x1a0
 vfs_write+0xb6/0x1a0
 ksys_write+0x5f/0xe0
 do_syscall_64+0x52/0x1a0
 entry_SYSCALL_64_after_hwframe+0x44/0xa9

Reported-by: Anton Eidelman <[email protected]>
Tested-by: Anton Eidelman <[email protected]>
Signed-off-by: Sagi Grimberg <[email protected]>
Signed-off-by: Christoph Hellwig <[email protected]>
digetx pushed a commit that referenced this pull request Jul 1, 2020
…onfig

When the cml_rt1011_rt5682_dailink[].codecs pointer is overridden by
a quirk with a devm allocated structure and the probe is deferred,
in the next probe we will see an use-after-free condition
(verified with KASAN). This can be avoided by using statically allocated
configurations - which simplifies the code quite a bit as well.

KASAN issue fixed.
[   23.301373] cml_rt1011_rt5682 cml_rt1011_rt5682: sof_rt1011_quirk = f
[   23.301875] ==================================================================
[   23.302018] BUG: KASAN: use-after-free in snd_cml_rt1011_probe+0x23a/0x3d0 [snd_soc_cml_rt1011_rt5682]
[   23.302178] Read of size 8 at addr ffff8881ec6acae0 by task kworker/0:2/105
[   23.302320] CPU: 0 PID: 105 Comm: kworker/0:2 Not tainted 5.7.0-rc7-test+ #3
[   23.302322] Hardware name: Google Helios/Helios, BIOS  01/21/2020
[   23.302329] Workqueue: events deferred_probe_work_func
[   23.302331] Call Trace:
[   23.302339]  dump_stack+0x76/0xa0
[   23.302345]  print_address_description.constprop.0.cold+0xd3/0x43e
[   23.302351]  ? _raw_spin_lock_irqsave+0x7b/0xd0
[   23.302355]  ? _raw_spin_trylock_bh+0xf0/0xf0
[   23.302362]  ? snd_cml_rt1011_probe+0x23a/0x3d0 [snd_soc_cml_rt1011_rt5682]
[   23.302365]  __kasan_report.cold+0x37/0x86
[   23.302371]  ? snd_cml_rt1011_probe+0x23a/0x3d0 [snd_soc_cml_rt1011_rt5682]
[   23.302375]  kasan_report+0x38/0x50
[   23.302382]  snd_cml_rt1011_probe+0x23a/0x3d0 [snd_soc_cml_rt1011_rt5682]
[   23.302389]  platform_drv_probe+0x66/0xc0

Fixes: 629ba12 ("ASoC: Intel: boards: split woofer and tweeter support")
Suggested-by: Ranjani Sridharan <[email protected]>
Signed-off-by: Fred Oh <[email protected]>
Signed-off-by: Pierre-Louis Bossart <[email protected]>
Reviewed-by: Ranjani Sridharan <[email protected]>
Reviewed-by: Bard Liao <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Mark Brown <[email protected]>
digetx pushed a commit that referenced this pull request Jul 1, 2020
devm_gpiod_get_index() doesn't return NULL but -ENOENT when the
requested GPIO doesn't exist,  leading to the following messages:

[    2.742468] gpiod_direction_input: invalid GPIO (errorpointer)
[    2.748147] can't set direction for gpio #2: -2
[    2.753081] gpiod_direction_input: invalid GPIO (errorpointer)
[    2.758724] can't set direction for gpio #3: -2
[    2.763666] gpiod_direction_output: invalid GPIO (errorpointer)
[    2.769394] can't set direction for gpio #4: -2
[    2.774341] gpiod_direction_input: invalid GPIO (errorpointer)
[    2.779981] can't set direction for gpio #5: -2
[    2.784545] ff000a20.serial: ttyCPM1 at MMIO 0xfff00a20 (irq = 39, base_baud = 8250000) is a CPM UART

Use devm_gpiod_get_index_optional() instead.

At the same time, handle the error case and properly exit
with an error.

Fixes: 97cbaf2 ("tty: serial: cpm_uart: Convert to use GPIO descriptors")
Cc: [email protected]
Cc: Linus Walleij <[email protected]>
Signed-off-by: Christophe Leroy <[email protected]>
Reviewed-by: Linus Walleij <[email protected]>
Link: https://lore.kernel.org/r/694a25fdce548c5ee8b060ef6a4b02746b8f25c0.1591986307.git.christophe.leroy@csgroup.eu
Signed-off-by: Greg Kroah-Hartman <[email protected]>
digetx pushed a commit that referenced this pull request Jul 1, 2020
Luo bin says:

====================
hinic: add some ethtool ops support

patch #1: support to set and get pause params with
          "ethtool -A/a" cmd
patch #2: support to set and get irq coalesce params with
          "ethtool -C/c" cmd
patch #3: support to do self test with "ethtool -t" cmd
patch #4: support to identify physical device with "ethtool -p" cmd
patch #5: support to get eeprom information with "ethtool -m" cmd
====================

Signed-off-by: David S. Miller <[email protected]>
digetx pushed a commit that referenced this pull request Jul 1, 2020
Petr Machata says:

====================
TC: Introduce qevents

The Spectrum hardware allows execution of one of several actions as a
result of queue management decisions: tail-dropping, early-dropping,
marking a packet, or passing a configured latency threshold or buffer
size. Such packets can be mirrored, trapped, or sampled.

Modeling the action to be taken as simply a TC action is very attractive,
but it is not obvious where to put these actions. At least with ECN marking
one could imagine a tree of qdiscs and classifiers that effectively
accomplishes this task, albeit in an impractically complex manner. But
there is just no way to match on dropped-ness of a packet, let alone
dropped-ness due to a particular reason.

To allow configuring user-defined actions as a result of inner workings of
a qdisc, this patch set introduces a concept of qevents. Those are attach
points for TC blocks, where filters can be put that are executed as the
packet hits well-defined points in the qdisc algorithms. The attached
blocks can be shared, in a manner similar to clsact ingress and egress
blocks, arbitrary classifiers with arbitrary actions can be put on them,
etc.

For example:

	red limit 500K avpkt 1K qevent early_drop block 10
	matchall action mirred egress mirror dev eth1

The central patch #2 introduces several helpers to allow easy and uniform
addition of qevents to qdiscs: initialization, destruction, qevent block
number change validation, and qevent handling, i.e. dispatch of the filters
attached to the block bound to a qevent.

Patch #1 adds root_lock argument to qdisc enqueue op. The problem this is
tackling is that if a qevent filter pushes packets to the same qdisc tree
that holds the qevent in the first place, attempt to take qdisc root lock
for the second time will lead to a deadlock. To solve the issue, qevent
handler needs to unlock and relock the root lock around the filter
processing. Passing root_lock around makes it possible to get the lock
where it is needed, and visibly so, such that it is obvious the lock will
be used when invoking a qevent.

The following two patches, #3 and #4, then add two qevents to the RED
qdisc: "early_drop" qevent fires when a packet is early-dropped; "mark"
qevent, when it is ECN-marked.

Patch #5 contains a selftest. I have mentioned this test when pushing the
RED ECN nodrop mode and said that "I have no confidence in its portability
to [...] different configurations". That still holds. The backlog and
packet size are tuned to make the test deterministic. But it is better than
nothing, and on the boxes that I ran it on it does work and shows that
qevents work the way they are supposed to, and that their addition has not
broken the other tested features.

This patch set does not deal with offloading. The idea there is that a
driver will be able to figure out that a given block is used in qevent
context by looking at binder type. A future patch-set will add a qdisc
pointer to struct flow_block_offload, which a driver will be able to
consult to glean the TC or other relevant attributes.

Changes from RFC to v1:
- Move a "q = qdisc_priv(sch)" from patch #3 to patch #4
- Fix deadlock caused by mirroring packet back to the same qdisc tree.
- Rename "tail" qevent to "tail_drop".
- Adapt to the new 100-column standard.
- Add a selftest
====================

Signed-off-by: David S. Miller <[email protected]>
digetx pushed a commit that referenced this pull request Jul 1, 2020
when a MPTCP client tries to connect to itself, tcp_finish_connect() is
never reached. Because of this, depending on the socket current state,
multiple faulty behaviours can be observed:

1) a WARN_ON() in subflow_data_ready() is hit
 WARNING: CPU: 2 PID: 882 at net/mptcp/subflow.c:911 subflow_data_ready+0x18b/0x230
 [...]
 CPU: 2 PID: 882 Comm: gh35 Not tainted 5.7.0+ #187
 [...]
 RIP: 0010:subflow_data_ready+0x18b/0x230
 [...]
 Call Trace:
  tcp_data_queue+0xd2f/0x4250
  tcp_rcv_state_process+0xb1c/0x49d3
  tcp_v4_do_rcv+0x2bc/0x790
  __release_sock+0x153/0x2d0
  release_sock+0x4f/0x170
  mptcp_shutdown+0x167/0x4e0
  __sys_shutdown+0xe6/0x180
  __x64_sys_shutdown+0x50/0x70
  do_syscall_64+0x9a/0x370
  entry_SYSCALL_64_after_hwframe+0x44/0xa9

2) client is stuck forever in mptcp_sendmsg() because the socket is not
   TCP_ESTABLISHED

 crash> bt 4847
 PID: 4847   TASK: ffff88814b2fb100  CPU: 1   COMMAND: "gh35"
  #0 [ffff8881376ff680] __schedule at ffffffff97248da4
  #1 [ffff8881376ff778] schedule at ffffffff9724a34f
  #2 [ffff8881376ff7a0] schedule_timeout at ffffffff97252ba0
  #3 [ffff8881376ff8a8] wait_woken at ffffffff958ab4ba
  #4 [ffff8881376ff940] sk_stream_wait_connect at ffffffff96c2d859
  #5 [ffff8881376ffa28] mptcp_sendmsg at ffffffff97207fca
  #6 [ffff8881376ffbc0] sock_sendmsg at ffffffff96be1b5b
  #7 [ffff8881376ffbe8] sock_write_iter at ffffffff96be1daa
  #8 [ffff8881376ffce8] new_sync_write at ffffffff95e5cb52
  #9 [ffff8881376ffe50] vfs_write at ffffffff95e6547f
 #10 [ffff8881376ffe90] ksys_write at ffffffff95e65d26
 #11 [ffff8881376fff28] do_syscall_64 at ffffffff956088ba
 #12 [ffff8881376fff50] entry_SYSCALL_64_after_hwframe at ffffffff9740008c
     RIP: 00007f126f6956ed  RSP: 00007ffc2a320278  RFLAGS: 00000217
     RAX: ffffffffffffffda  RBX: 0000000020000044  RCX: 00007f126f6956ed
     RDX: 0000000000000004  RSI: 00000000004007b8  RDI: 0000000000000003
     RBP: 00007ffc2a3202a0   R8: 0000000000400720   R9: 0000000000400720
     R10: 0000000000400720  R11: 0000000000000217  R12: 00000000004004b0
     R13: 00007ffc2a320380  R14: 0000000000000000  R15: 0000000000000000
     ORIG_RAX: 0000000000000001  CS: 0033  SS: 002b

3) tcpdump captures show that DSS is exchanged even when MP_CAPABLE handshake
   didn't complete.

 $ tcpdump -tnnr bad.pcap
 IP 127.0.0.1.20000 > 127.0.0.1.20000: Flags [S], seq 3208913911, win 65483, options [mss 65495,sackOK,TS val 3291706876 ecr 3291694721,nop,wscale 7,mptcp capable v1], length 0
 IP 127.0.0.1.20000 > 127.0.0.1.20000: Flags [S.], seq 3208913911, ack 3208913912, win 65483, options [mss 65495,sackOK,TS val 3291706876 ecr 3291706876,nop,wscale 7,mptcp capable v1], length 0
 IP 127.0.0.1.20000 > 127.0.0.1.20000: Flags [.], ack 1, win 512, options [nop,nop,TS val 3291706876 ecr 3291706876], length 0
 IP 127.0.0.1.20000 > 127.0.0.1.20000: Flags [F.], seq 1, ack 1, win 512, options [nop,nop,TS val 3291707876 ecr 3291706876,mptcp dss fin seq 0 subseq 0 len 1,nop,nop], length 0
 IP 127.0.0.1.20000 > 127.0.0.1.20000: Flags [.], ack 2, win 512, options [nop,nop,TS val 3291707876 ecr 3291707876], length 0

force a fallback to TCP in these cases, and adjust the main socket
state to avoid hanging in mptcp_sendmsg().

Closes: multipath-tcp/mptcp_net-next#35
Reported-by: Christoph Paasch <[email protected]>
Suggested-by: Paolo Abeni <[email protected]>
Signed-off-by: Davide Caratti <[email protected]>
Reviewed-by: Mat Martineau <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
digetx pushed a commit that referenced this pull request Jul 1, 2020
Ido Schimmel says:

====================
Add ethtool extended link state

Amit says:

Currently, device drivers can only indicate to user space if the network
link is up or down, without additional information.

This patch set provides an infrastructure that allows these drivers to
expose more information to user space about the link state. The
information can save users' time when trying to understand why a link is
not operationally up, for example.

The above is achieved by extending the existing ethtool LINKSTATE_GET
command with attributes that carry the extended state.

For example, no link due to missing cable:

$ ethtool ethX
...
Link detected: no (No cable)

Beside the general extended state, drivers can pass additional
information about the link state using the sub-state field. For example:

$ ethtool ethX
...
Link detected: no (Autoneg, No partner detected)

In the future the infrastructure can be extended - for example - to
allow PHY drivers to report whether a downshift to a lower speed
occurred. Something like:

$ ethtool ethX
...
Link detected: yes (downshifted)

Patch set overview:

Patches #1-#3 move mlxsw ethtool code to a separate file
Patches #4-#5 add the ethtool infrastructure for extended link state
Patches #6-#7 add support of extended link state in the mlxsw driver
Patches #8-#10 add test cases

Changes since v1:

* In documentation, show ETHTOOL_LINK_EXT_STATE_* and
  ETHTOOL_LINK_EXT_SUBSTATE_* constants instead of user-space strings
* Add `_CI_` to cable_issue substates to be consistent with
  other substates
* Keep the commit messages within 75 columns
* Use u8 variable for __link_ext_substate
* Document the meaning of -ENODATA in get_link_ext_state() callback
  description
* Do not zero data->link_ext_state_provided after getting an error
* Use `ret` variable for error value

Changes since RFC:

* Move documentation patch before ethtool patch
* Add nla_total_size() instead of sizeof() directly
* Return an error code from linkstate_get_ext_state()
* Remove SHORTED_CABLE, add CABLE_TEST_FAILURE instead
* Check if the interface is administratively up before setting ext_state
* Document all sub-states
====================

Signed-off-by: David S. Miller <[email protected]>
digetx pushed a commit that referenced this pull request Jul 1, 2020
This patch is to fix a crash:

 #3 [ffffb6580689f898] oops_end at ffffffffa2835bc2
 #4 [ffffb6580689f8b8] no_context at ffffffffa28766e7
 #5 [ffffb6580689f920] async_page_fault at ffffffffa320135e
    [exception RIP: f2fs_is_compressed_page+34]
    RIP: ffffffffa2ba83a2  RSP: ffffb6580689f9d8  RFLAGS: 00010213
    RAX: 0000000000000001  RBX: fffffc0f50b34bc0  RCX: 0000000000002122
    RDX: 0000000000002123  RSI: 0000000000000c00  RDI: fffffc0f50b34bc0
    RBP: ffff97e815a40178   R8: 0000000000000000   R9: ffff97e83ffc9000
    R10: 0000000000032300  R11: 0000000000032380  R12: ffffb6580689fa38
    R13: fffffc0f50b34bc0  R14: ffff97e825cbd000  R15: 0000000000000c00
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
 #6 [ffffb6580689f9d8] __is_cp_guaranteed at ffffffffa2b7ea98
 #7 [ffffb6580689f9f0] f2fs_submit_page_write at ffffffffa2b81a69
 #8 [ffffb6580689fa30] f2fs_do_write_meta_page at ffffffffa2b99777
 #9 [ffffb6580689fae0] __f2fs_write_meta_page at ffffffffa2b75f1a
 #10 [ffffb6580689fb18] f2fs_sync_meta_pages at ffffffffa2b77466
 #11 [ffffb6580689fc98] do_checkpoint at ffffffffa2b78e46
 #12 [ffffb6580689fd88] f2fs_write_checkpoint at ffffffffa2b79c29
 #13 [ffffb6580689fdd0] f2fs_sync_fs at ffffffffa2b69d95
 #14 [ffffb6580689fe20] sync_filesystem at ffffffffa2ad2574
 #15 [ffffb6580689fe30] generic_shutdown_super at ffffffffa2a9b582
 #16 [ffffb6580689fe48] kill_block_super at ffffffffa2a9b6d1
 #17 [ffffb6580689fe60] kill_f2fs_super at ffffffffa2b6abe1
 #18 [ffffb6580689fea0] deactivate_locked_super at ffffffffa2a9afb6
 #19 [ffffb6580689feb8] cleanup_mnt at ffffffffa2abcad4
 #20 [ffffb6580689fee0] task_work_run at ffffffffa28bca28
 #21 [ffffb6580689ff00] exit_to_usermode_loop at ffffffffa28050b7
 #22 [ffffb6580689ff38] do_syscall_64 at ffffffffa280560e
 #23 [ffffb6580689ff50] entry_SYSCALL_64_after_hwframe at ffffffffa320008c

This occurred when umount f2fs if enable F2FS_FS_COMPRESSION
with F2FS_IO_TRACE. Fixes it by adding IS_IO_TRACED_PAGE to check
validity of pid for page_private.

Signed-off-by: Yu Changchun <[email protected]>
Reviewed-by: Chao Yu <[email protected]>
Signed-off-by: Jaegeuk Kim <[email protected]>
digetx pushed a commit that referenced this pull request Jul 1, 2020
Jakub Sitnicki says:

====================
This patch set prepares ground for link-based multi-prog attachment for
future netns attach types, with BPF_SK_LOOKUP attach type in mind [0].

Two changes are needed in order to attach and run a series of BPF programs:

  1) an bpf_prog_array of programs to run (patch #2), and
  2) a list of attached links to keep track of attachments (patch #3).

Nothing changes for BPF flow_dissector. Just as before only one program can
be attached to netns.

In v3 I've simplified patch #2 that introduces bpf_prog_array to take
advantage of the fact that it will hold at most one program for now.

In particular, I'm no longer using bpf_prog_array_copy. It turned out to be
less suitable for link operations than I thought as it fails to append the
same BPF program.

bpf_prog_array_replace_item is also gone, because we know we always want to
replace the first element in prog_array.

Naturally the code that handles bpf_prog_array will need change once
more when there is a program type that allows multi-prog attachment. But I
feel it will be better to do it gradually and present it together with
tests that actually exercise multi-prog code paths.

[0] https://lore.kernel.org/bpf/[email protected]/

v2 -> v3:
- Don't check if run_array is null in link update callback. (Martin)
- Allow updating the link with the same BPF program. (Andrii)
- Add patch #4 with a test for the above case.
- Kill bpf_prog_array_replace_item. Access the run_array directly.
- Switch from bpf_prog_array_copy() to bpf_prog_array_alloc(1, ...).
- Replace rcu_deref_protected & RCU_INIT_POINTER with rcu_replace_pointer.
- Drop Andrii's Ack from patch #2. Code changed.

v1 -> v2:

- Show with a (void) cast that bpf_prog_array_replace_item() return value
  is ignored on purpose. (Andrii)
- Explain why bpf-cgroup cannot replace programs in bpf_prog_array based
  on bpf_prog pointer comparison in patch #2 description. (Andrii)
====================

Signed-off-by: Alexei Starovoitov <[email protected]>
digetx pushed a commit that referenced this pull request Jul 1, 2020
swap_info_struct si.highest_bit, si.swap_map[offset] and si.flags could
be accessed concurrently separately as noticed by KCSAN,

=== si.highest_bit ===

 write to 0xffff8d5abccdc4d4 of 4 bytes by task 5353 on cpu 24:
  swap_range_alloc+0x81/0x130
  swap_range_alloc at mm/swapfile.c:681
  scan_swap_map_slots+0x371/0xb90
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0xf2/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 read to 0xffff8d5abccdc4d4 of 4 bytes by task 6672 on cpu 70:
  scan_swap_map_slots+0x4a6/0xb90
  scan_swap_map_slots at mm/swapfile.c:892
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0xf2/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 Reported by Kernel Concurrency Sanitizer on:
 CPU: 70 PID: 6672 Comm: oom01 Tainted: G        W    L 5.5.0-next-20200205+ #3
 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019

=== si.swap_map[offset] ===

 write to 0xffffbc370c29a64c of 1 bytes by task 6856 on cpu 86:
  __swap_entry_free_locked+0x8c/0x100
  __swap_entry_free_locked at mm/swapfile.c:1209 (discriminator 4)
  __swap_entry_free.constprop.20+0x69/0xb0
  free_swap_and_cache+0x53/0xa0
  unmap_page_range+0x7f8/0x1d70
  unmap_single_vma+0xcd/0x170
  unmap_vmas+0x18b/0x220
  exit_mmap+0xee/0x220
  mmput+0x10e/0x270
  do_exit+0x59b/0xf40
  do_group_exit+0x8b/0x180

 read to 0xffffbc370c29a64c of 1 bytes by task 6855 on cpu 20:
  _swap_info_get+0x81/0xa0
  _swap_info_get at mm/swapfile.c:1140
  free_swap_and_cache+0x40/0xa0
  unmap_page_range+0x7f8/0x1d70
  unmap_single_vma+0xcd/0x170
  unmap_vmas+0x18b/0x220
  exit_mmap+0xee/0x220
  mmput+0x10e/0x270
  do_exit+0x59b/0xf40
  do_group_exit+0x8b/0x180

=== si.flags ===

 write to 0xffff956c8fc6c400 of 8 bytes by task 6087 on cpu 23:
  scan_swap_map_slots+0x6fe/0xb50
  scan_swap_map_slots at mm/swapfile.c:887
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0x377/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 read to 0xffff956c8fc6c400 of 8 bytes by task 6207 on cpu 63:
  _swap_info_get+0x41/0xa0
  __swap_info_get at mm/swapfile.c:1114
  put_swap_page+0x84/0x490
  __remove_mapping+0x384/0x5f0
  shrink_page_list+0xff1/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

The writes are under si->lock but the reads are not. For si.highest_bit
and si.swap_map[offset], data race could trigger logic bugs, so fix them
by having WRITE_ONCE() for the writes and READ_ONCE() for the reads
except those isolated reads where they compare against zero which a data
race would cause no harm. Thus, annotate them as intentional data races
using the data_race() macro.

For si.flags, the readers are only interested in a single bit where a
data race there would cause no issue there.

Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Qian Cai <[email protected]>
Cc: Marco Elver <[email protected]>
Cc: Hugh Dickins <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
digetx pushed a commit that referenced this pull request Jul 3, 2020
[  150.887733] ======================================================
[  150.893903] WARNING: possible circular locking dependency detected
[  150.905917] ------------------------------------------------------
[  150.912129] kfdtest/4081 is trying to acquire lock:
[  150.917002] ffff8f7f3762e118 (&mm->mmap_sem#2){++++}, at:
                                 __might_fault+0x3e/0x90
[  150.924490]
               but task is already holding lock:
[  150.930320] ffff8f7f49d229e8 (&dqm->lock_hidden){+.+.}, at:
                                destroy_queue_cpsch+0x29/0x210 [amdgpu]
[  150.939432]
               which lock already depends on the new lock.

[  150.947603]
               the existing dependency chain (in reverse order) is:
[  150.955074]
               -> #3 (&dqm->lock_hidden){+.+.}:
[  150.960822]        __mutex_lock+0xa1/0x9f0
[  150.964996]        evict_process_queues_cpsch+0x22/0x120 [amdgpu]
[  150.971155]        kfd_process_evict_queues+0x3b/0xc0 [amdgpu]
[  150.977054]        kgd2kfd_quiesce_mm+0x25/0x60 [amdgpu]
[  150.982442]        amdgpu_amdkfd_evict_userptr+0x35/0x70 [amdgpu]
[  150.988615]        amdgpu_mn_invalidate_hsa+0x41/0x60 [amdgpu]
[  150.994448]        __mmu_notifier_invalidate_range_start+0xa4/0x240
[  151.000714]        copy_page_range+0xd70/0xd80
[  151.005159]        dup_mm+0x3ca/0x550
[  151.008816]        copy_process+0x1bdc/0x1c70
[  151.013183]        _do_fork+0x76/0x6c0
[  151.016929]        __x64_sys_clone+0x8c/0xb0
[  151.021201]        do_syscall_64+0x4a/0x1d0
[  151.025404]        entry_SYSCALL_64_after_hwframe+0x49/0xbe
[  151.030977]
               -> #2 (&adev->notifier_lock){+.+.}:
[  151.036993]        __mutex_lock+0xa1/0x9f0
[  151.041168]        amdgpu_mn_invalidate_hsa+0x30/0x60 [amdgpu]
[  151.047019]        __mmu_notifier_invalidate_range_start+0xa4/0x240
[  151.053277]        copy_page_range+0xd70/0xd80
[  151.057722]        dup_mm+0x3ca/0x550
[  151.061388]        copy_process+0x1bdc/0x1c70
[  151.065748]        _do_fork+0x76/0x6c0
[  151.069499]        __x64_sys_clone+0x8c/0xb0
[  151.073765]        do_syscall_64+0x4a/0x1d0
[  151.077952]        entry_SYSCALL_64_after_hwframe+0x49/0xbe
[  151.083523]
               -> #1 (mmu_notifier_invalidate_range_start){+.+.}:
[  151.090833]        change_protection+0x802/0xab0
[  151.095448]        mprotect_fixup+0x187/0x2d0
[  151.099801]        setup_arg_pages+0x124/0x250
[  151.104251]        load_elf_binary+0x3a4/0x1464
[  151.108781]        search_binary_handler+0x6c/0x210
[  151.113656]        __do_execve_file.isra.40+0x7f7/0xa50
[  151.118875]        do_execve+0x21/0x30
[  151.122632]        call_usermodehelper_exec_async+0x17e/0x190
[  151.128393]        ret_from_fork+0x24/0x30
[  151.132489]
               -> #0 (&mm->mmap_sem#2){++++}:
[  151.138064]        __lock_acquire+0x11a1/0x1490
[  151.142597]        lock_acquire+0x90/0x180
[  151.146694]        __might_fault+0x68/0x90
[  151.150879]        read_sdma_queue_counter+0x5f/0xb0 [amdgpu]
[  151.156693]        update_sdma_queue_past_activity_stats+0x3b/0x90 [amdgpu]
[  151.163725]        destroy_queue_cpsch+0x1ae/0x210 [amdgpu]
[  151.169373]        pqm_destroy_queue+0xf0/0x250 [amdgpu]
[  151.174762]        kfd_ioctl_destroy_queue+0x32/0x70 [amdgpu]
[  151.180577]        kfd_ioctl+0x223/0x400 [amdgpu]
[  151.185284]        ksys_ioctl+0x8f/0xb0
[  151.189118]        __x64_sys_ioctl+0x16/0x20
[  151.193389]        do_syscall_64+0x4a/0x1d0
[  151.197569]        entry_SYSCALL_64_after_hwframe+0x49/0xbe
[  151.203141]
               other info that might help us debug this:

[  151.211140] Chain exists of:
                 &mm->mmap_sem#2 --> &adev->notifier_lock --> &dqm->lock_hidden

[  151.222535]  Possible unsafe locking scenario:

[  151.228447]        CPU0                    CPU1
[  151.232971]        ----                    ----
[  151.237502]   lock(&dqm->lock_hidden);
[  151.241254]                                lock(&adev->notifier_lock);
[  151.247774]                                lock(&dqm->lock_hidden);
[  151.254038]   lock(&mm->mmap_sem#2);

This commit fixes the warning by ensuring get_user() is not called
while reading SDMA stats with dqm_lock held as get_user() could cause a
page fault which leads to the circular locking scenario.

Signed-off-by: Mukul Joshi <[email protected]>
Reviewed-by: Felix Kuehling <[email protected]>
Signed-off-by: Alex Deucher <[email protected]>
digetx pushed a commit that referenced this pull request Jul 3, 2020
…bin Murphy <[email protected]>:

Hi all,

Although Florian was concerned about a trivial inline check to deal with
shared IRQs adding overhead, the reality is that it would be so small as
to not be worth even thinking about unless the driver was already tuned
to squeeze out every last cycle. And a brief look over the code shows
that that clearly isn't the case.

This is an example of some of the easy low-hanging fruit that jumps out
just from code inspection. Based on disassembly and ARM1176 cycle
timings, patch #2 should save the equivalent of 2-3 shared interrupt
checks off the critical path in all cases, and patch #3 possibly up to
about 100x more. I don't have any means to test these patches, let alone
measure performance, so they're only backed by the principle that less
code - and in particular fewer memory accesses - is almost always
better.

There is almost certainly a *lot* more to be had from careful use of
relaxed I/O accessors, not doing a read-modify-write of CS at every
reset, tweaking the loops further to avoid unnecessary writebacks to
variables, and so on. However since I'm not invested in this personally
I'm not going to pursue it any further; I'm throwing these patches out
as more of a demonstration to back up my original drive-by review
comments, so if anyone want to pick them up and run with them then
please do so.

Robin.

Robin Murphy (3):
  spi: bcm3835: Tidy up bcm2835_spi_reset_hw()
  spi: bcm2835: Micro-optimise IRQ handler
  spi: bcm2835: Micro-optimise FIFO loops

 drivers/spi/spi-bcm2835.c | 45 +++++++++++++++++++--------------------
 1 file changed, 22 insertions(+), 23 deletions(-)

--
2.23.0.dirty

_______________________________________________
linux-arm-kernel mailing list
[email protected]
http://lists.infradead.org/mailman/listinfo/linux-arm-kernel
digetx pushed a commit that referenced this pull request Jul 3, 2020
Edward Cree says:

====================
sfc: prerequisites for EF100 driver, part 3

Continuing on from [1] and [2], this series assembles the last pieces
 of the common codebase that will be used by the forthcoming EF100
 driver.
Patch #1 also adds a minor feature to EF10 (setting MTU on VFs) since
 EF10 supports the same MCDI extension which that feature will use on
 EF100.
Patches #5 & #7, while they should have no externally-visible effect
 on driver functionality, change how that functionality is implemented
 and how the driver represents TXQ configuration internally, so are
 not mere cleanup/refactoring like most of these prerequisites have
 (from the perspective of the existing sfc driver) been.

Changes in v2:
* Patch #1: use efx_mcdi_set_mtu() directly, instead of as a fallback,
  in the mtu_only case (Jakub)
* Patch #3: fix symbol collision in non-modular builds by renaming
  interrupt_mode to efx_interrupt_mode (kernel test robot)
* Patch #6: check for failure of netif_set_real_num_[tr]x_queues (Jakub)
* Patch #12: cleaner solution for ethtool drvinfo (Jakub, David)

[1]: https://lore.kernel.org/netdev/[email protected]/T/
[2]: https://lore.kernel.org/netdev/[email protected]/T/
====================

Reviewed-by: Jakub Kicinski <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
digetx pushed a commit that referenced this pull request Jul 3, 2020
swap_info_struct si.highest_bit, si.swap_map[offset] and si.flags could
be accessed concurrently separately as noticed by KCSAN,

=== si.highest_bit ===

 write to 0xffff8d5abccdc4d4 of 4 bytes by task 5353 on cpu 24:
  swap_range_alloc+0x81/0x130
  swap_range_alloc at mm/swapfile.c:681
  scan_swap_map_slots+0x371/0xb90
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0xf2/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 read to 0xffff8d5abccdc4d4 of 4 bytes by task 6672 on cpu 70:
  scan_swap_map_slots+0x4a6/0xb90
  scan_swap_map_slots at mm/swapfile.c:892
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0xf2/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 Reported by Kernel Concurrency Sanitizer on:
 CPU: 70 PID: 6672 Comm: oom01 Tainted: G        W    L 5.5.0-next-20200205+ #3
 Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019

=== si.swap_map[offset] ===

 write to 0xffffbc370c29a64c of 1 bytes by task 6856 on cpu 86:
  __swap_entry_free_locked+0x8c/0x100
  __swap_entry_free_locked at mm/swapfile.c:1209 (discriminator 4)
  __swap_entry_free.constprop.20+0x69/0xb0
  free_swap_and_cache+0x53/0xa0
  unmap_page_range+0x7f8/0x1d70
  unmap_single_vma+0xcd/0x170
  unmap_vmas+0x18b/0x220
  exit_mmap+0xee/0x220
  mmput+0x10e/0x270
  do_exit+0x59b/0xf40
  do_group_exit+0x8b/0x180

 read to 0xffffbc370c29a64c of 1 bytes by task 6855 on cpu 20:
  _swap_info_get+0x81/0xa0
  _swap_info_get at mm/swapfile.c:1140
  free_swap_and_cache+0x40/0xa0
  unmap_page_range+0x7f8/0x1d70
  unmap_single_vma+0xcd/0x170
  unmap_vmas+0x18b/0x220
  exit_mmap+0xee/0x220
  mmput+0x10e/0x270
  do_exit+0x59b/0xf40
  do_group_exit+0x8b/0x180

=== si.flags ===

 write to 0xffff956c8fc6c400 of 8 bytes by task 6087 on cpu 23:
  scan_swap_map_slots+0x6fe/0xb50
  scan_swap_map_slots at mm/swapfile.c:887
  get_swap_pages+0x39d/0x5c0
  get_swap_page+0x377/0x524
  add_to_swap+0xe4/0x1c0
  shrink_page_list+0x1795/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

 read to 0xffff956c8fc6c400 of 8 bytes by task 6207 on cpu 63:
  _swap_info_get+0x41/0xa0
  __swap_info_get at mm/swapfile.c:1114
  put_swap_page+0x84/0x490
  __remove_mapping+0x384/0x5f0
  shrink_page_list+0xff1/0x2870
  shrink_inactive_list+0x316/0x880
  shrink_lruvec+0x8dc/0x1380
  shrink_node+0x317/0xd80
  do_try_to_free_pages+0x1f7/0xa10
  try_to_free_pages+0x26c/0x5e0
  __alloc_pages_slowpath+0x458/0x1290

The writes are under si->lock but the reads are not. For si.highest_bit
and si.swap_map[offset], data race could trigger logic bugs, so fix them
by having WRITE_ONCE() for the writes and READ_ONCE() for the reads
except those isolated reads where they compare against zero which a data
race would cause no harm. Thus, annotate them as intentional data races
using the data_race() macro.

For si.flags, the readers are only interested in a single bit where a
data race there would cause no issue there.

Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Qian Cai <[email protected]>
Cc: Marco Elver <[email protected]>
Cc: Hugh Dickins <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
digetx pushed a commit that referenced this pull request Jul 8, 2020
Use preempt_disable() to fix the following bug under CONFIG_DEBUG_PREEMPT.

[   21.915305] BUG: using smp_processor_id() in preemptible [00000000] code: qemu-system-mip/1056
[   21.923996] caller is do_ri+0x1d4/0x690
[   21.927921] CPU: 0 PID: 1056 Comm: qemu-system-mip Not tainted 5.8.0-rc2 #3
[   21.934913] Stack : 0000000000000001 ffffffff81370000 ffffffff8071cd60 a80f926d5ac95694
[   21.942984]         a80f926d5ac95694 0000000000000000 98000007f0043c88 ffffffff80f2fe40
[   21.951054]         0000000000000000 0000000000000000 0000000000000001 0000000000000000
[   21.959123]         ffffffff802d60cc 98000007f0043dd8 ffffffff81f4b1e8 ffffffff81f60000
[   21.967192]         ffffffff81f60000 ffffffff80fe0000 ffff000000000000 0000000000000000
[   21.975261]         fffffffff500cce1 0000000000000001 0000000000000002 0000000000000000
[   21.983331]         ffffffff80fe1a40 0000000000000006 ffffffff8077f940 0000000000000000
[   21.991401]         ffffffff81460000 98000007f0040000 98000007f0043c80 000000fffba8cf20
[   21.999471]         ffffffff8071cd60 0000000000000000 0000000000000000 0000000000000000
[   22.007541]         0000000000000000 0000000000000000 ffffffff80212ab4 a80f926d5ac95694
[   22.015610]         ...
[   22.018086] Call Trace:
[   22.020562] [<ffffffff80212ab4>] show_stack+0xa4/0x138
[   22.025732] [<ffffffff8071cd60>] dump_stack+0xf0/0x150
[   22.030903] [<ffffffff80c73f5c>] check_preemption_disabled+0xf4/0x100
[   22.037375] [<ffffffff80213b84>] do_ri+0x1d4/0x690
[   22.042198] [<ffffffff8020b828>] handle_ri_int+0x44/0x5c
[   24.359386] BUG: using smp_processor_id() in preemptible [00000000] code: qemu-system-mip/1072
[   24.368204] caller is do_ri+0x1a8/0x690
[   24.372169] CPU: 4 PID: 1072 Comm: qemu-system-mip Not tainted 5.8.0-rc2 #3
[   24.379170] Stack : 0000000000000001 ffffffff81370000 ffffffff8071cd60 a80f926d5ac95694
[   24.387246]         a80f926d5ac95694 0000000000000000 98001007ef06bc88 ffffffff80f2fe40
[   24.395318]         0000000000000000 0000000000000000 0000000000000001 0000000000000000
[   24.403389]         ffffffff802d60cc 98001007ef06bdd8 ffffffff81f4b818 ffffffff81f60000
[   24.411461]         ffffffff81f60000 ffffffff80fe0000 ffff000000000000 0000000000000000
[   24.419533]         fffffffff500cce1 0000000000000001 0000000000000002 0000000000000000
[   24.427603]         ffffffff80fe0000 0000000000000006 ffffffff8077f940 0000000000000020
[   24.435673]         ffffffff81460020 98001007ef068000 98001007ef06bc80 000000fffbbbb370
[   24.443745]         ffffffff8071cd60 0000000000000000 0000000000000000 0000000000000000
[   24.451816]         0000000000000000 0000000000000000 ffffffff80212ab4 a80f926d5ac95694
[   24.459887]         ...
[   24.462367] Call Trace:
[   24.464846] [<ffffffff80212ab4>] show_stack+0xa4/0x138
[   24.470029] [<ffffffff8071cd60>] dump_stack+0xf0/0x150
[   24.475208] [<ffffffff80c73f5c>] check_preemption_disabled+0xf4/0x100
[   24.481682] [<ffffffff80213b58>] do_ri+0x1a8/0x690
[   24.486509] [<ffffffff8020b828>] handle_ri_int+0x44/0x5c

Signed-off-by: Xingxing Su <[email protected]>
Signed-off-by: Thomas Bogendoerfer <[email protected]>
digetx pushed a commit that referenced this pull request Nov 2, 2021
…eam state

The internal stream state sets the timeout to 120 seconds 2 seconds
after the creation of the flow, attach this internal stream state to the
IPS_ASSURED flag for consistent event reporting.

Before this patch:

      [NEW] udp      17 30 src=10.246.11.13 dst=216.239.35.0 sport=37282 dport=123 [UNREPLIED] src=216.239.35.0 dst=10.246.11.13 sport=123 dport=37282
   [UPDATE] udp      17 30 src=10.246.11.13 dst=216.239.35.0 sport=37282 dport=123 src=216.239.35.0 dst=10.246.11.13 sport=123 dport=37282
   [UPDATE] udp      17 30 src=10.246.11.13 dst=216.239.35.0 sport=37282 dport=123 src=216.239.35.0 dst=10.246.11.13 sport=123 dport=37282 [ASSURED]
  [DESTROY] udp      17 src=10.246.11.13 dst=216.239.35.0 sport=37282 dport=123 src=216.239.35.0 dst=10.246.11.13 sport=123 dport=37282 [ASSURED]

Note IPS_ASSURED for the flow not yet in the internal stream state.

after this update:

      [NEW] udp      17 30 src=10.246.11.13 dst=216.239.35.0 sport=37282 dport=123 [UNREPLIED] src=216.239.35.0 dst=10.246.11.13 sport=123 dport=37282
   [UPDATE] udp      17 30 src=10.246.11.13 dst=216.239.35.0 sport=37282 dport=123 src=216.239.35.0 dst=10.246.11.13 sport=123 dport=37282
   [UPDATE] udp      17 120 src=10.246.11.13 dst=216.239.35.0 sport=37282 dport=123 src=216.239.35.0 dst=10.246.11.13 sport=123 dport=37282 [ASSURED]
  [DESTROY] udp      17 src=10.246.11.13 dst=216.239.35.0 sport=37282 dport=123 src=216.239.35.0 dst=10.246.11.13 sport=123 dport=37282 [ASSURED]

Before this patch, short-lived UDP flows never entered IPS_ASSURED, so
they were already candidate flow to be deleted by early_drop under
stress.

Before this patch, IPS_ASSURED is set on regardless the internal stream
state, attach this internal stream state to IPS_ASSURED.

packet #1 (original direction) enters NEW state
packet #2 (reply direction) enters ESTABLISHED state, sets on IPS_SEEN_REPLY
paclet #3 (any direction) sets on IPS_ASSURED (if 2 seconds since the
          creation has passed by).

Reported-by: Maciej Żenczykowski <[email protected]>
Signed-off-by: Pablo Neira Ayuso <[email protected]>
digetx pushed a commit that referenced this pull request Nov 5, 2021
Convert the 9p filesystem to use the netfs helper lib to handle readpage,
readahead and write_begin, converting those into a common issue_op for the
filesystem itself to handle.  The netfs helper lib also handles reading
from fscache if a cache is available, and interleaving reads from both
sources.

This change also switches from the old fscache I/O API to the new one,
meaning that fscache no longer keeps track of netfs pages and instead does
async DIO between the backing files and the 9p file pagecache.  As a part
of this change, the handling of PG_fscache changes.  It now just means that
the cache has a write I/O operation in progress on a page (PG_locked
is used for a read I/O op).

Note that this is a cut-down version of the fscache rewrite and does not
change any of the cookie and cache coherency handling.

Changes
=======
ver #4:
  - Rebase on top of folios.
  - Don't use wait_on_page_bit_killable().

ver #3:
  - v9fs_req_issue_op() needs to terminate the subrequest.
  - v9fs_write_end() needs to call SetPageUptodate() a bit more often.
  - It's not CONFIG_{AFS,V9FS}_FSCACHE[1]
  - v9fs_init_rreq() should take a ref on the p9_fid and the cleanup should
    drop it [from Dominique Martinet].

Signed-off-by: David Howells <[email protected]>
Reviewed-and-tested-by: Dominique Martinet <[email protected]>
cc: [email protected]
cc: [email protected]
Link: https://lore.kernel.org/r/[email protected]/ [1]
Link: https://lore.kernel.org/r/163162772646.438332.16323773205855053535.stgit@warthog.procyon.org.uk/ # rfc
Link: https://lore.kernel.org/r/163189109885.2509237.7153668924503399173.stgit@warthog.procyon.org.uk/ # rfc v2
Link: https://lore.kernel.org/r/163363943896.1980952.1226527304649419689.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/163551662876.1877519.14706391695553204156.stgit@warthog.procyon.org.uk/ # v4
Link: https://lore.kernel.org/r/163584179557.4023316.11089762304657644342.stgit@warthog.procyon.org.uk # rebase on folio
Signed-off-by: Dominique Martinet <[email protected]>
digetx pushed a commit that referenced this pull request Nov 5, 2021
Host crashes when pci_enable_atomic_ops_to_root() is called for VFs with
virtual buses. The virtual buses added to SR-IOV have bus->self set to NULL
and host crashes due to this.

  PID: 4481   TASK: ffff89c6941b0000  CPU: 53  COMMAND: "bash"
  ...
   #3 [ffff9a9481713808] oops_end at ffffffffb9025cd6
   #4 [ffff9a9481713828] page_fault_oops at ffffffffb906e417
   #5 [ffff9a9481713888] exc_page_fault at ffffffffb9a0ad14
   #6 [ffff9a94817138b0] asm_exc_page_fault at ffffffffb9c00ace
      [exception RIP: pcie_capability_read_dword+28]
      RIP: ffffffffb952fd5c  RSP: ffff9a9481713960  RFLAGS: 00010246
      RAX: 0000000000000001  RBX: ffff89c6b1096000  RCX: 0000000000000000
      RDX: ffff9a9481713990  RSI: 0000000000000024  RDI: 0000000000000000
      RBP: 0000000000000080   R8: 0000000000000008   R9: ffff89c64341a2f8
      R10: 0000000000000002  R11: 0000000000000000  R12: ffff89c648bab000
      R13: 0000000000000000  R14: 0000000000000000  R15: ffff89c648bab0c8
      ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
   #7 [ffff9a9481713988] pci_enable_atomic_ops_to_root at ffffffffb95359a6
   #8 [ffff9a94817139c0] bnxt_qplib_determine_atomics at ffffffffc08c1a33 [bnxt_re]
   #9 [ffff9a94817139d0] bnxt_re_dev_init at ffffffffc08ba2d1 [bnxt_re]

Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit in Device
Control 2 is reserved for VFs.  The PF value applies to all associated VFs.

Return -EINVAL if pci_enable_atomic_ops_to_root() is called for a VF.

Link: https://lore.kernel.org/r/[email protected]
Fixes: 35f5ace ("RDMA/bnxt_re: Enable global atomic ops if platform supports")
Fixes: 430a236 ("PCI: Add pci_enable_atomic_ops_to_root()")
Signed-off-by: Selvin Xavier <[email protected]>
Signed-off-by: Bjorn Helgaas <[email protected]>
Reviewed-by: Andy Gospodarek <[email protected]>
digetx pushed a commit that referenced this pull request Nov 9, 2021
It is generally unsafe to call put_device() with dpm_list_mtx held,
because the given device's release routine may carry out an action
depending on that lock which then may deadlock, so modify the
system-wide suspend and resume of devices to always drop dpm_list_mtx
before calling put_device() (and adjust white space somewhat while
at it).

For instance, this prevents the following splat from showing up in
the kernel log after a system resume in certain configurations:

[ 3290.969514] ======================================================
[ 3290.969517] WARNING: possible circular locking dependency detected
[ 3290.969519] 5.15.0+ #2420 Tainted: G S
[ 3290.969523] ------------------------------------------------------
[ 3290.969525] systemd-sleep/4553 is trying to acquire lock:
[ 3290.969529] ffff888117ab1138 ((wq_completion)hci0#2){+.+.}-{0:0}, at: flush_workqueue+0x87/0x4a0
[ 3290.969554]
               but task is already holding lock:
[ 3290.969556] ffffffff8280fca8 (dpm_list_mtx){+.+.}-{3:3}, at: dpm_resume+0x12e/0x3e0
[ 3290.969571]
               which lock already depends on the new lock.

[ 3290.969573]
               the existing dependency chain (in reverse order) is:
[ 3290.969575]
               -> #3 (dpm_list_mtx){+.+.}-{3:3}:
[ 3290.969583]        __mutex_lock+0x9d/0xa30
[ 3290.969591]        device_pm_add+0x2e/0xe0
[ 3290.969597]        device_add+0x4d5/0x8f0
[ 3290.969605]        hci_conn_add_sysfs+0x43/0xb0 [bluetooth]
[ 3290.969689]        hci_conn_complete_evt.isra.71+0x124/0x750 [bluetooth]
[ 3290.969747]        hci_event_packet+0xd6c/0x28a0 [bluetooth]
[ 3290.969798]        hci_rx_work+0x213/0x640 [bluetooth]
[ 3290.969842]        process_one_work+0x2aa/0x650
[ 3290.969851]        worker_thread+0x39/0x400
[ 3290.969859]        kthread+0x142/0x170
[ 3290.969865]        ret_from_fork+0x22/0x30
[ 3290.969872]
               -> #2 (&hdev->lock){+.+.}-{3:3}:
[ 3290.969881]        __mutex_lock+0x9d/0xa30
[ 3290.969887]        hci_event_packet+0xba/0x28a0 [bluetooth]
[ 3290.969935]        hci_rx_work+0x213/0x640 [bluetooth]
[ 3290.969978]        process_one_work+0x2aa/0x650
[ 3290.969985]        worker_thread+0x39/0x400
[ 3290.969993]        kthread+0x142/0x170
[ 3290.969999]        ret_from_fork+0x22/0x30
[ 3290.970004]
               -> #1 ((work_completion)(&hdev->rx_work)){+.+.}-{0:0}:
[ 3290.970013]        process_one_work+0x27d/0x650
[ 3290.970020]        worker_thread+0x39/0x400
[ 3290.970028]        kthread+0x142/0x170
[ 3290.970033]        ret_from_fork+0x22/0x30
[ 3290.970038]
               -> #0 ((wq_completion)hci0#2){+.+.}-{0:0}:
[ 3290.970047]        __lock_acquire+0x15cb/0x1b50
[ 3290.970054]        lock_acquire+0x26c/0x300
[ 3290.970059]        flush_workqueue+0xae/0x4a0
[ 3290.970066]        drain_workqueue+0xa1/0x130
[ 3290.970073]        destroy_workqueue+0x34/0x1f0
[ 3290.970081]        hci_release_dev+0x49/0x180 [bluetooth]
[ 3290.970130]        bt_host_release+0x1d/0x30 [bluetooth]
[ 3290.970195]        device_release+0x33/0x90
[ 3290.970201]        kobject_release+0x63/0x160
[ 3290.970211]        dpm_resume+0x164/0x3e0
[ 3290.970215]        dpm_resume_end+0xd/0x20
[ 3290.970220]        suspend_devices_and_enter+0x1a4/0xba0
[ 3290.970229]        pm_suspend+0x26b/0x310
[ 3290.970236]        state_store+0x42/0x90
[ 3290.970243]        kernfs_fop_write_iter+0x135/0x1b0
[ 3290.970251]        new_sync_write+0x125/0x1c0
[ 3290.970257]        vfs_write+0x360/0x3c0
[ 3290.970263]        ksys_write+0xa7/0xe0
[ 3290.970269]        do_syscall_64+0x3a/0x80
[ 3290.970276]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3290.970284]
               other info that might help us debug this:

[ 3290.970285] Chain exists of:
                 (wq_completion)hci0#2 --> &hdev->lock --> dpm_list_mtx

[ 3290.970297]  Possible unsafe locking scenario:

[ 3290.970299]        CPU0                    CPU1
[ 3290.970300]        ----                    ----
[ 3290.970302]   lock(dpm_list_mtx);
[ 3290.970306]                                lock(&hdev->lock);
[ 3290.970310]                                lock(dpm_list_mtx);
[ 3290.970314]   lock((wq_completion)hci0#2);
[ 3290.970319]
                *** DEADLOCK ***

[ 3290.970321] 7 locks held by systemd-sleep/4553:
[ 3290.970325]  #0: ffff888103bcd448 (sb_writers#4){.+.+}-{0:0}, at: ksys_write+0xa7/0xe0
[ 3290.970341]  #1: ffff888115a14488 (&of->mutex){+.+.}-{3:3}, at: kernfs_fop_write_iter+0x103/0x1b0
[ 3290.970355]  #2: ffff888100f719e0 (kn->active#233){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x10c/0x1b0
[ 3290.970369]  #3: ffffffff82661048 (autosleep_lock){+.+.}-{3:3}, at: state_store+0x12/0x90
[ 3290.970384]  #4: ffffffff82658ac8 (system_transition_mutex){+.+.}-{3:3}, at: pm_suspend+0x9f/0x310
[ 3290.970399]  #5: ffffffff827f2a48 (acpi_scan_lock){+.+.}-{3:3}, at: acpi_suspend_begin+0x4c/0x80
[ 3290.970416]  #6: ffffffff8280fca8 (dpm_list_mtx){+.+.}-{3:3}, at: dpm_resume+0x12e/0x3e0
[ 3290.970428]
               stack backtrace:
[ 3290.970431] CPU: 3 PID: 4553 Comm: systemd-sleep Tainted: G S                5.15.0+ #2420
[ 3290.970438] Hardware name: Dell Inc. XPS 13 9380/0RYJWW, BIOS 1.5.0 06/03/2019
[ 3290.970441] Call Trace:
[ 3290.970446]  dump_stack_lvl+0x44/0x57
[ 3290.970454]  check_noncircular+0x105/0x120
[ 3290.970468]  ? __lock_acquire+0x15cb/0x1b50
[ 3290.970474]  __lock_acquire+0x15cb/0x1b50
[ 3290.970487]  lock_acquire+0x26c/0x300
[ 3290.970493]  ? flush_workqueue+0x87/0x4a0
[ 3290.970503]  ? __raw_spin_lock_init+0x3b/0x60
[ 3290.970510]  ? lockdep_init_map_type+0x58/0x240
[ 3290.970519]  flush_workqueue+0xae/0x4a0
[ 3290.970526]  ? flush_workqueue+0x87/0x4a0
[ 3290.970544]  ? drain_workqueue+0xa1/0x130
[ 3290.970552]  drain_workqueue+0xa1/0x130
[ 3290.970561]  destroy_workqueue+0x34/0x1f0
[ 3290.970572]  hci_release_dev+0x49/0x180 [bluetooth]
[ 3290.970624]  bt_host_release+0x1d/0x30 [bluetooth]
[ 3290.970687]  device_release+0x33/0x90
[ 3290.970695]  kobject_release+0x63/0x160
[ 3290.970705]  dpm_resume+0x164/0x3e0
[ 3290.970710]  ? dpm_resume_early+0x251/0x3b0
[ 3290.970718]  dpm_resume_end+0xd/0x20
[ 3290.970723]  suspend_devices_and_enter+0x1a4/0xba0
[ 3290.970737]  pm_suspend+0x26b/0x310
[ 3290.970746]  state_store+0x42/0x90
[ 3290.970755]  kernfs_fop_write_iter+0x135/0x1b0
[ 3290.970764]  new_sync_write+0x125/0x1c0
[ 3290.970777]  vfs_write+0x360/0x3c0
[ 3290.970785]  ksys_write+0xa7/0xe0
[ 3290.970794]  do_syscall_64+0x3a/0x80
[ 3290.970803]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3290.970811] RIP: 0033:0x7f41b1328164
[ 3290.970819] Code: 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 80 00 00 00 00 8b 05 4a d2 2c 00 48 63 ff 85 c0 75 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 f3 c3 66 90 55 53 48 89 d5 48 89 f3 48 83
[ 3290.970824] RSP: 002b:00007ffe6ae21b28 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 3290.970831] RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007f41b1328164
[ 3290.970836] RDX: 0000000000000004 RSI: 000055965e651070 RDI: 0000000000000004
[ 3290.970839] RBP: 000055965e651070 R08: 000055965e64f390 R09: 00007f41b1e3d1c0
[ 3290.970843] R10: 000000000000000a R11: 0000000000000246 R12: 0000000000000004
[ 3290.970846] R13: 0000000000000001 R14: 000055965e64f2b0 R15: 0000000000000004

Cc: All applicable <[email protected]>
Signed-off-by: Rafael J. Wysocki <[email protected]>
digetx pushed a commit that referenced this pull request Nov 9, 2021
Patch series "Solve silent data loss caused by poisoned page cache (shmem/tmpfs)", v5.

When discussing the patch that splits page cache THP in order to offline
the poisoned page, Noaya mentioned there is a bigger problem [1] that
prevents this from working since the page cache page will be truncated
if uncorrectable errors happen.  By looking this deeper it turns out
this approach (truncating poisoned page) may incur silent data loss for
all non-readonly filesystems if the page is dirty.  It may be worse for
in-memory filesystem, e.g.  shmem/tmpfs since the data blocks are
actually gone.

To solve this problem we could keep the poisoned dirty page in page
cache then notify the users on any later access, e.g.  page fault,
read/write, etc.  The clean page could be truncated as is since they can
be reread from disk later on.

The consequence is the filesystems may find poisoned page and manipulate
it as healthy page since all the filesystems actually don't check if the
page is poisoned or not in all the relevant paths except page fault.  In
general, we need make the filesystems be aware of poisoned page before
we could keep the poisoned page in page cache in order to solve the data
loss problem.

To make filesystems be aware of poisoned page we should consider:

 - The page should be not written back: clearing dirty flag could
   prevent from writeback.

 - The page should not be dropped (it shows as a clean page) by drop
   caches or other callers: the refcount pin from hwpoison could prevent
   from invalidating (called by cache drop, inode cache shrinking, etc),
   but it doesn't avoid invalidation in DIO path.

 - The page should be able to get truncated/hole punched/unlinked: it
   works as it is.

 - Notify users when the page is accessed, e.g. read/write, page fault
   and other paths (compression, encryption, etc).

The scope of the last one is huge since almost all filesystems need do
it once a page is returned from page cache lookup.  There are a couple
of options to do it:

 1. Check hwpoison flag for every path, the most straightforward way.

 2. Return NULL for poisoned page from page cache lookup, the most
    callsites check if NULL is returned, this should have least work I
    think. But the error handling in filesystems just return -ENOMEM,
    the error code will incur confusion to the users obviously.

 3. To improve #2, we could return error pointer, e.g. ERR_PTR(-EIO),
    but this will involve significant amount of code change as well
    since all the paths need check if the pointer is ERR or not just
    like option #1.

I did prototypes for both #1 and #3, but it seems #3 may require more
changes than #1.  For #3 ERR_PTR will be returned so all the callers
need to check the return value otherwise invalid pointer may be
dereferenced, but not all callers really care about the content of the
page, for example, partial truncate which just sets the truncated range
in one page to 0.  So for such paths it needs additional modification if
ERR_PTR is returned.  And if the callers have their own way to handle
the problematic pages we need to add a new FGP flag to tell FGP
functions to return the pointer to the page.

It may happen very rarely, but once it happens the consequence (data
corruption) could be very bad and it is very hard to debug.  It seems
this problem had been slightly discussed before, but seems no action was
taken at that time.  [2]

As the aforementioned investigation, it needs huge amount of work to
solve the potential data loss for all filesystems.  But it is much
easier for in-memory filesystems and such filesystems actually suffer
more than others since even the data blocks are gone due to truncating.
So this patchset starts from shmem/tmpfs by taking option #1.

TODO:
* The unpoison has been broken since commit 0ed950d ("mm,hwpoison: make
  get_hwpoison_page() call get_any_page()"), and this patch series make
  refcount check for unpoisoning shmem page fail.
* Expand to other filesystems.  But I haven't heard feedback from filesystem
  developers yet.

Patch breakdown:
Patch #1: cleanup, depended by patch #2
Patch #2: fix THP with hwpoisoned subpage(s) PMD map bug
Patch #3: coding style cleanup
Patch #4: refactor and preparation.
Patch #5: keep the poisoned page in page cache and handle such case for all
          the paths.
Patch #6: the previous patches unblock page cache THP split, so this patch
          add page cache THP split support.

This patch (of 4):

A minor cleanup to the indent.

Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Yang Shi <[email protected]>
Reviewed-by: Naoya Horiguchi <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Kirill A. Shutemov <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Oscar Salvador <[email protected]>
Cc: Peter Xu <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
digetx pushed a commit that referenced this pull request Nov 9, 2021
After removing /dev/kmem, sanitizing /proc/kcore and handling /dev/mem,
this series tackles the last sane way how a VM could accidentially access
logically unplugged memory managed by a virtio-mem device: /proc/vmcore

When dumping memory via "makedumpfile", PG_offline pages, used by
virtio-mem to flag logically unplugged memory, are already properly
excluded; however, especially when accessing/copying /proc/vmcore "the
usual way", we can still end up reading logically unplugged memory part of
a virtio-mem device.

Patch #1-#3 are cleanups.  Patch #4 extends the existing oldmem_pfn_is_ram
mechanism.  Patch #5-#7 are virtio-mem refactorings for patch #8, which
implements the virtio-mem logic to query the state of device blocks.

Patch #8:

"
Although virtio-mem currently supports reading unplugged memory in the
hypervisor, this will change in the future, indicated to the device via
a new feature flag. We similarly sanitized /proc/kcore access recently.
[...]
Distributions that support virtio-mem+kdump have to make sure that the
virtio_mem module will be part of the kdump kernel or the kdump initrd;
dracut was recently [2] extended to include virtio-mem in the generated
initrd. As long as no special kdump kernels are used, this will
automatically make sure that virtio-mem will be around in the kdump initrd
and sanitize /proc/vmcore access -- with dracut.
"

This is the last remaining bit to support
VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE [3] in the Linux implementation of
virtio-mem.

Note: this is best-effort.  We'll never be able to control what runs
inside the second kernel, really, but we also don't have to care: we only
care about sane setups where we don't want our VM getting zapped once we
touch the wrong memory location while dumping.  While we usually expect
sane setups to use "makedumfile", nothing really speaks against just
copying /proc/vmcore, especially in environments where HWpoisioning isn't
typically expected.  Also, we really don't want to put all our trust
completely on the memmap, so sanitizing also makes sense when just using
"makedumpfile".

[1] https://lkml.kernel.org/r/[email protected]
[2] dracutdevs/dracut#1157
[3] https://lists.oasis-open.org/archives/virtio-comment/202109/msg00021.html

This patch (of 9):

The callback is only used for the vmcore nowadays.

Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: David Hildenbrand <[email protected]>
Reviewed-by: Boris Ostrovsky <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: "H. Peter Anvin" <[email protected]>
Cc: Juergen Gross <[email protected]>
Cc: Stefano Stabellini <[email protected]>
Cc: "Michael S. Tsirkin" <[email protected]>
Cc: Jason Wang <[email protected]>
Cc: Dave Young <[email protected]>
Cc: Baoquan He <[email protected]>
Cc: Vivek Goyal <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Oscar Salvador <[email protected]>
Cc: Mike Rapoport <[email protected]>
Cc: "Rafael J. Wysocki" <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
digetx pushed a commit that referenced this pull request Nov 10, 2021
After removing /dev/kmem, sanitizing /proc/kcore and handling /dev/mem,
this series tackles the last sane way how a VM could accidentially
access logically unplugged memory managed by a virtio-mem device:
/proc/vmcore

When dumping memory via "makedumpfile", PG_offline pages, used by
virtio-mem to flag logically unplugged memory, are already properly
excluded; however, especially when accessing/copying /proc/vmcore "the
usual way", we can still end up reading logically unplugged memory part
of a virtio-mem device.

Patch #1-#3 are cleanups.  Patch #4 extends the existing
oldmem_pfn_is_ram mechanism.  Patch #5-#7 are virtio-mem refactorings
for patch #8, which implements the virtio-mem logic to query the state
of device blocks.

Patch #8:
 "Although virtio-mem currently supports reading unplugged memory in the
  hypervisor, this will change in the future, indicated to the device
  via a new feature flag. We similarly sanitized /proc/kcore access
  recently.
  [...]
  Distributions that support virtio-mem+kdump have to make sure that the
  virtio_mem module will be part of the kdump kernel or the kdump
  initrd; dracut was recently [2] extended to include virtio-mem in the
  generated initrd. As long as no special kdump kernels are used, this
  will automatically make sure that virtio-mem will be around in the
  kdump initrd and sanitize /proc/vmcore access -- with dracut"

This is the last remaining bit to support
VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE [3] in the Linux implementation of
virtio-mem.

Note: this is best-effort.  We'll never be able to control what runs
inside the second kernel, really, but we also don't have to care: we
only care about sane setups where we don't want our VM getting zapped
once we touch the wrong memory location while dumping.  While we usually
expect sane setups to use "makedumfile", nothing really speaks against
just copying /proc/vmcore, especially in environments where HWpoisioning
isn't typically expected.  Also, we really don't want to put all our
trust completely on the memmap, so sanitizing also makes sense when just
using "makedumpfile".

[1] https://lkml.kernel.org/r/[email protected]
[2] dracutdevs/dracut#1157
[3] https://lists.oasis-open.org/archives/virtio-comment/202109/msg00021.html

This patch (of 9):

The callback is only used for the vmcore nowadays.

Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: David Hildenbrand <[email protected]>
Reviewed-by: Boris Ostrovsky <[email protected]>
Cc: Thomas Gleixner <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: "H. Peter Anvin" <[email protected]>
Cc: Juergen Gross <[email protected]>
Cc: Stefano Stabellini <[email protected]>
Cc: "Michael S. Tsirkin" <[email protected]>
Cc: Jason Wang <[email protected]>
Cc: Dave Young <[email protected]>
Cc: Baoquan He <[email protected]>
Cc: Vivek Goyal <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: Oscar Salvador <[email protected]>
Cc: Mike Rapoport <[email protected]>
Cc: "Rafael J. Wysocki" <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
digetx pushed a commit that referenced this pull request Nov 16, 2021
The exit function fixes a memory leak with the src field as detected by
leak sanitizer. An example of which is:

Indirect leak of 25133184 byte(s) in 207 object(s) allocated from:
    #0 0x7f199ecfe987 in __interceptor_calloc libsanitizer/asan/asan_malloc_linux.cpp:154
    #1 0x55defe638224 in annotated_source__alloc_histograms util/annotate.c:803
    #2 0x55defe6397e4 in symbol__hists util/annotate.c:952
    #3 0x55defe639908 in symbol__inc_addr_samples util/annotate.c:968
    #4 0x55defe63aa29 in hist_entry__inc_addr_samples util/annotate.c:1119
    #5 0x55defe499a79 in hist_iter__report_callback tools/perf/builtin-report.c:182
    #6 0x55defe7a859d in hist_entry_iter__add util/hist.c:1236
    #7 0x55defe49aa63 in process_sample_event tools/perf/builtin-report.c:315
    #8 0x55defe731bc8 in evlist__deliver_sample util/session.c:1473
    #9 0x55defe731e38 in machines__deliver_event util/session.c:1510
    #10 0x55defe732a23 in perf_session__deliver_event util/session.c:1590
    #11 0x55defe72951e in ordered_events__deliver_event util/session.c:183
    #12 0x55defe740082 in do_flush util/ordered-events.c:244
    #13 0x55defe7407cb in __ordered_events__flush util/ordered-events.c:323
    #14 0x55defe740a61 in ordered_events__flush util/ordered-events.c:341
    #15 0x55defe73837f in __perf_session__process_events util/session.c:2390
    #16 0x55defe7385ff in perf_session__process_events util/session.c:2420
    ...

Signed-off-by: Ian Rogers <[email protected]>
Acked-by: Namhyung Kim <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: James Clark <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: Kajol Jain <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Martin Liška <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Stephane Eranian <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
digetx pushed a commit that referenced this pull request Nov 18, 2021
Often some test cases like btrfs/161 trigger lockdep splats that complain
about possible unsafe lock scenario due to the fact that during mount,
when reading the chunk tree we end up calling blkdev_get_by_path() while
holding a read lock on a leaf of the chunk tree. That produces a lockdep
splat like the following:

[ 3653.683975] ======================================================
[ 3653.685148] WARNING: possible circular locking dependency detected
[ 3653.686301] 5.15.0-rc7-btrfs-next-103 #1 Not tainted
[ 3653.687239] ------------------------------------------------------
[ 3653.688400] mount/447465 is trying to acquire lock:
[ 3653.689320] ffff8c6b0c76e528 (&disk->open_mutex){+.+.}-{3:3}, at: blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.691054]
               but task is already holding lock:
[ 3653.692155] ffff8c6b0a9f39e0 (btrfs-chunk-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x24/0x110 [btrfs]
[ 3653.693978]
               which lock already depends on the new lock.

[ 3653.695510]
               the existing dependency chain (in reverse order) is:
[ 3653.696915]
               -> #3 (btrfs-chunk-00){++++}-{3:3}:
[ 3653.698053]        down_read_nested+0x4b/0x140
[ 3653.698893]        __btrfs_tree_read_lock+0x24/0x110 [btrfs]
[ 3653.699988]        btrfs_read_lock_root_node+0x31/0x40 [btrfs]
[ 3653.701205]        btrfs_search_slot+0x537/0xc00 [btrfs]
[ 3653.702234]        btrfs_insert_empty_items+0x32/0x70 [btrfs]
[ 3653.703332]        btrfs_init_new_device+0x563/0x15b0 [btrfs]
[ 3653.704439]        btrfs_ioctl+0x2110/0x3530 [btrfs]
[ 3653.705405]        __x64_sys_ioctl+0x83/0xb0
[ 3653.706215]        do_syscall_64+0x3b/0xc0
[ 3653.706990]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3653.708040]
               -> #2 (sb_internal#2){.+.+}-{0:0}:
[ 3653.708994]        lock_release+0x13d/0x4a0
[ 3653.709533]        up_write+0x18/0x160
[ 3653.710017]        btrfs_sync_file+0x3f3/0x5b0 [btrfs]
[ 3653.710699]        __loop_update_dio+0xbd/0x170 [loop]
[ 3653.711360]        lo_ioctl+0x3b1/0x8a0 [loop]
[ 3653.711929]        block_ioctl+0x48/0x50
[ 3653.712442]        __x64_sys_ioctl+0x83/0xb0
[ 3653.712991]        do_syscall_64+0x3b/0xc0
[ 3653.713519]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3653.714233]
               -> #1 (&lo->lo_mutex){+.+.}-{3:3}:
[ 3653.715026]        __mutex_lock+0x92/0x900
[ 3653.715648]        lo_open+0x28/0x60 [loop]
[ 3653.716275]        blkdev_get_whole+0x28/0x90
[ 3653.716867]        blkdev_get_by_dev.part.0+0x142/0x320
[ 3653.717537]        blkdev_open+0x5e/0xa0
[ 3653.718043]        do_dentry_open+0x163/0x390
[ 3653.718604]        path_openat+0x3f0/0xa80
[ 3653.719128]        do_filp_open+0xa9/0x150
[ 3653.719652]        do_sys_openat2+0x97/0x160
[ 3653.720197]        __x64_sys_openat+0x54/0x90
[ 3653.720766]        do_syscall_64+0x3b/0xc0
[ 3653.721285]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3653.721986]
               -> #0 (&disk->open_mutex){+.+.}-{3:3}:
[ 3653.722775]        __lock_acquire+0x130e/0x2210
[ 3653.723348]        lock_acquire+0xd7/0x310
[ 3653.723867]        __mutex_lock+0x92/0x900
[ 3653.724394]        blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.725041]        blkdev_get_by_path+0xb8/0xd0
[ 3653.725614]        btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs]
[ 3653.726332]        open_fs_devices+0xd7/0x2c0 [btrfs]
[ 3653.726999]        btrfs_read_chunk_tree+0x3ad/0x870 [btrfs]
[ 3653.727739]        open_ctree+0xb8e/0x17bf [btrfs]
[ 3653.728384]        btrfs_mount_root.cold+0x12/0xde [btrfs]
[ 3653.729130]        legacy_get_tree+0x30/0x50
[ 3653.729676]        vfs_get_tree+0x28/0xc0
[ 3653.730192]        vfs_kern_mount.part.0+0x71/0xb0
[ 3653.730800]        btrfs_mount+0x11d/0x3a0 [btrfs]
[ 3653.731427]        legacy_get_tree+0x30/0x50
[ 3653.731970]        vfs_get_tree+0x28/0xc0
[ 3653.732486]        path_mount+0x2d4/0xbe0
[ 3653.732997]        __x64_sys_mount+0x103/0x140
[ 3653.733560]        do_syscall_64+0x3b/0xc0
[ 3653.734080]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3653.734782]
               other info that might help us debug this:

[ 3653.735784] Chain exists of:
                 &disk->open_mutex --> sb_internal#2 --> btrfs-chunk-00

[ 3653.737123]  Possible unsafe locking scenario:

[ 3653.737865]        CPU0                    CPU1
[ 3653.738435]        ----                    ----
[ 3653.739007]   lock(btrfs-chunk-00);
[ 3653.739449]                                lock(sb_internal#2);
[ 3653.740193]                                lock(btrfs-chunk-00);
[ 3653.740955]   lock(&disk->open_mutex);
[ 3653.741431]
                *** DEADLOCK ***

[ 3653.742176] 3 locks held by mount/447465:
[ 3653.742739]  #0: ffff8c6acf85c0e8 (&type->s_umount_key#44/1){+.+.}-{3:3}, at: alloc_super+0xd5/0x3b0
[ 3653.744114]  #1: ffffffffc0b28f70 (uuid_mutex){+.+.}-{3:3}, at: btrfs_read_chunk_tree+0x59/0x870 [btrfs]
[ 3653.745563]  #2: ffff8c6b0a9f39e0 (btrfs-chunk-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x24/0x110 [btrfs]
[ 3653.747066]
               stack backtrace:
[ 3653.747723] CPU: 4 PID: 447465 Comm: mount Not tainted 5.15.0-rc7-btrfs-next-103 #1
[ 3653.748873] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 3653.750592] Call Trace:
[ 3653.750967]  dump_stack_lvl+0x57/0x72
[ 3653.751526]  check_noncircular+0xf3/0x110
[ 3653.752136]  ? stack_trace_save+0x4b/0x70
[ 3653.752748]  __lock_acquire+0x130e/0x2210
[ 3653.753356]  lock_acquire+0xd7/0x310
[ 3653.753898]  ? blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.754596]  ? lock_is_held_type+0xe8/0x140
[ 3653.755125]  ? blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.755729]  ? blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.756338]  __mutex_lock+0x92/0x900
[ 3653.756794]  ? blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.757400]  ? do_raw_spin_unlock+0x4b/0xa0
[ 3653.757930]  ? _raw_spin_unlock+0x29/0x40
[ 3653.758437]  ? bd_prepare_to_claim+0x129/0x150
[ 3653.758999]  ? trace_module_get+0x2b/0xd0
[ 3653.759508]  ? try_module_get.part.0+0x50/0x80
[ 3653.760072]  blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.760661]  ? devcgroup_check_permission+0xc1/0x1f0
[ 3653.761288]  blkdev_get_by_path+0xb8/0xd0
[ 3653.761797]  btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs]
[ 3653.762454]  open_fs_devices+0xd7/0x2c0 [btrfs]
[ 3653.763055]  ? clone_fs_devices+0x8f/0x170 [btrfs]
[ 3653.763689]  btrfs_read_chunk_tree+0x3ad/0x870 [btrfs]
[ 3653.764370]  ? kvm_sched_clock_read+0x14/0x40
[ 3653.764922]  open_ctree+0xb8e/0x17bf [btrfs]
[ 3653.765493]  ? super_setup_bdi_name+0x79/0xd0
[ 3653.766043]  btrfs_mount_root.cold+0x12/0xde [btrfs]
[ 3653.766780]  ? rcu_read_lock_sched_held+0x3f/0x80
[ 3653.767488]  ? kfree+0x1f2/0x3c0
[ 3653.767979]  legacy_get_tree+0x30/0x50
[ 3653.768548]  vfs_get_tree+0x28/0xc0
[ 3653.769076]  vfs_kern_mount.part.0+0x71/0xb0
[ 3653.769718]  btrfs_mount+0x11d/0x3a0 [btrfs]
[ 3653.770381]  ? rcu_read_lock_sched_held+0x3f/0x80
[ 3653.771086]  ? kfree+0x1f2/0x3c0
[ 3653.771574]  legacy_get_tree+0x30/0x50
[ 3653.772136]  vfs_get_tree+0x28/0xc0
[ 3653.772673]  path_mount+0x2d4/0xbe0
[ 3653.773201]  __x64_sys_mount+0x103/0x140
[ 3653.773793]  do_syscall_64+0x3b/0xc0
[ 3653.774333]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3653.775094] RIP: 0033:0x7f648bc45aaa

This happens because through btrfs_read_chunk_tree(), which is called only
during mount, ends up acquiring the mutex open_mutex of a block device
while holding a read lock on a leaf of the chunk tree while other paths
need to acquire other locks before locking extent buffers of the chunk
tree.

Since at mount time when we call btrfs_read_chunk_tree() we know that
we don't have other tasks running in parallel and modifying the chunk
tree, we can simply skip locking of chunk tree extent buffers. So do
that and move the assertion that checks the fs is not yet mounted to the
top block of btrfs_read_chunk_tree(), with a comment before doing it.

Signed-off-by: Filipe Manana <[email protected]>
Signed-off-by: David Sterba <[email protected]>
digetx pushed a commit that referenced this pull request Nov 18, 2021
A race condition is triggered when usermode control is given to
userspace before the kernel's MSFT query responds, resulting in an
unexpected response to userspace's reset command.

Issue can be observed in btmon:

< HCI Command: Vendor (0x3f|0x001e) plen 2                    #3 [hci0]
        05 01                                            ..
@ USER Open: bt_stack_manage (privileged) version 2.22  {0x0002} [hci0]
< HCI Command: Reset (0x03|0x0003) plen 0                     #4 [hci0]
> HCI Event: Command Complete (0x0e) plen 5                   #5 [hci0]
      Vendor (0x3f|0x001e) ncmd 1
	Status: Command Disallowed (0x0c)
	05                                               .
> HCI Event: Command Complete (0x0e) plen 4                   #6 [hci0]
      Reset (0x03|0x0003) ncmd 2
	Status: Success (0x00)

Reviewed-by: Abhishek Pandit-Subedi <[email protected]>
Reviewed-by: Sonny Sasaka <[email protected]>
Signed-off-by: Jesse Melhuish <[email protected]>
Signed-off-by: Marcel Holtmann <[email protected]>
digetx pushed a commit that referenced this pull request Nov 18, 2021
Often some test cases like btrfs/161 trigger lockdep splats that complain
about possible unsafe lock scenario due to the fact that during mount,
when reading the chunk tree we end up calling blkdev_get_by_path() while
holding a read lock on a leaf of the chunk tree. That produces a lockdep
splat like the following:

[ 3653.683975] ======================================================
[ 3653.685148] WARNING: possible circular locking dependency detected
[ 3653.686301] 5.15.0-rc7-btrfs-next-103 #1 Not tainted
[ 3653.687239] ------------------------------------------------------
[ 3653.688400] mount/447465 is trying to acquire lock:
[ 3653.689320] ffff8c6b0c76e528 (&disk->open_mutex){+.+.}-{3:3}, at: blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.691054]
               but task is already holding lock:
[ 3653.692155] ffff8c6b0a9f39e0 (btrfs-chunk-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x24/0x110 [btrfs]
[ 3653.693978]
               which lock already depends on the new lock.

[ 3653.695510]
               the existing dependency chain (in reverse order) is:
[ 3653.696915]
               -> #3 (btrfs-chunk-00){++++}-{3:3}:
[ 3653.698053]        down_read_nested+0x4b/0x140
[ 3653.698893]        __btrfs_tree_read_lock+0x24/0x110 [btrfs]
[ 3653.699988]        btrfs_read_lock_root_node+0x31/0x40 [btrfs]
[ 3653.701205]        btrfs_search_slot+0x537/0xc00 [btrfs]
[ 3653.702234]        btrfs_insert_empty_items+0x32/0x70 [btrfs]
[ 3653.703332]        btrfs_init_new_device+0x563/0x15b0 [btrfs]
[ 3653.704439]        btrfs_ioctl+0x2110/0x3530 [btrfs]
[ 3653.705405]        __x64_sys_ioctl+0x83/0xb0
[ 3653.706215]        do_syscall_64+0x3b/0xc0
[ 3653.706990]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3653.708040]
               -> #2 (sb_internal#2){.+.+}-{0:0}:
[ 3653.708994]        lock_release+0x13d/0x4a0
[ 3653.709533]        up_write+0x18/0x160
[ 3653.710017]        btrfs_sync_file+0x3f3/0x5b0 [btrfs]
[ 3653.710699]        __loop_update_dio+0xbd/0x170 [loop]
[ 3653.711360]        lo_ioctl+0x3b1/0x8a0 [loop]
[ 3653.711929]        block_ioctl+0x48/0x50
[ 3653.712442]        __x64_sys_ioctl+0x83/0xb0
[ 3653.712991]        do_syscall_64+0x3b/0xc0
[ 3653.713519]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3653.714233]
               -> #1 (&lo->lo_mutex){+.+.}-{3:3}:
[ 3653.715026]        __mutex_lock+0x92/0x900
[ 3653.715648]        lo_open+0x28/0x60 [loop]
[ 3653.716275]        blkdev_get_whole+0x28/0x90
[ 3653.716867]        blkdev_get_by_dev.part.0+0x142/0x320
[ 3653.717537]        blkdev_open+0x5e/0xa0
[ 3653.718043]        do_dentry_open+0x163/0x390
[ 3653.718604]        path_openat+0x3f0/0xa80
[ 3653.719128]        do_filp_open+0xa9/0x150
[ 3653.719652]        do_sys_openat2+0x97/0x160
[ 3653.720197]        __x64_sys_openat+0x54/0x90
[ 3653.720766]        do_syscall_64+0x3b/0xc0
[ 3653.721285]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3653.721986]
               -> #0 (&disk->open_mutex){+.+.}-{3:3}:
[ 3653.722775]        __lock_acquire+0x130e/0x2210
[ 3653.723348]        lock_acquire+0xd7/0x310
[ 3653.723867]        __mutex_lock+0x92/0x900
[ 3653.724394]        blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.725041]        blkdev_get_by_path+0xb8/0xd0
[ 3653.725614]        btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs]
[ 3653.726332]        open_fs_devices+0xd7/0x2c0 [btrfs]
[ 3653.726999]        btrfs_read_chunk_tree+0x3ad/0x870 [btrfs]
[ 3653.727739]        open_ctree+0xb8e/0x17bf [btrfs]
[ 3653.728384]        btrfs_mount_root.cold+0x12/0xde [btrfs]
[ 3653.729130]        legacy_get_tree+0x30/0x50
[ 3653.729676]        vfs_get_tree+0x28/0xc0
[ 3653.730192]        vfs_kern_mount.part.0+0x71/0xb0
[ 3653.730800]        btrfs_mount+0x11d/0x3a0 [btrfs]
[ 3653.731427]        legacy_get_tree+0x30/0x50
[ 3653.731970]        vfs_get_tree+0x28/0xc0
[ 3653.732486]        path_mount+0x2d4/0xbe0
[ 3653.732997]        __x64_sys_mount+0x103/0x140
[ 3653.733560]        do_syscall_64+0x3b/0xc0
[ 3653.734080]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3653.734782]
               other info that might help us debug this:

[ 3653.735784] Chain exists of:
                 &disk->open_mutex --> sb_internal#2 --> btrfs-chunk-00

[ 3653.737123]  Possible unsafe locking scenario:

[ 3653.737865]        CPU0                    CPU1
[ 3653.738435]        ----                    ----
[ 3653.739007]   lock(btrfs-chunk-00);
[ 3653.739449]                                lock(sb_internal#2);
[ 3653.740193]                                lock(btrfs-chunk-00);
[ 3653.740955]   lock(&disk->open_mutex);
[ 3653.741431]
                *** DEADLOCK ***

[ 3653.742176] 3 locks held by mount/447465:
[ 3653.742739]  #0: ffff8c6acf85c0e8 (&type->s_umount_key#44/1){+.+.}-{3:3}, at: alloc_super+0xd5/0x3b0
[ 3653.744114]  #1: ffffffffc0b28f70 (uuid_mutex){+.+.}-{3:3}, at: btrfs_read_chunk_tree+0x59/0x870 [btrfs]
[ 3653.745563]  #2: ffff8c6b0a9f39e0 (btrfs-chunk-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x24/0x110 [btrfs]
[ 3653.747066]
               stack backtrace:
[ 3653.747723] CPU: 4 PID: 447465 Comm: mount Not tainted 5.15.0-rc7-btrfs-next-103 #1
[ 3653.748873] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 3653.750592] Call Trace:
[ 3653.750967]  dump_stack_lvl+0x57/0x72
[ 3653.751526]  check_noncircular+0xf3/0x110
[ 3653.752136]  ? stack_trace_save+0x4b/0x70
[ 3653.752748]  __lock_acquire+0x130e/0x2210
[ 3653.753356]  lock_acquire+0xd7/0x310
[ 3653.753898]  ? blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.754596]  ? lock_is_held_type+0xe8/0x140
[ 3653.755125]  ? blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.755729]  ? blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.756338]  __mutex_lock+0x92/0x900
[ 3653.756794]  ? blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.757400]  ? do_raw_spin_unlock+0x4b/0xa0
[ 3653.757930]  ? _raw_spin_unlock+0x29/0x40
[ 3653.758437]  ? bd_prepare_to_claim+0x129/0x150
[ 3653.758999]  ? trace_module_get+0x2b/0xd0
[ 3653.759508]  ? try_module_get.part.0+0x50/0x80
[ 3653.760072]  blkdev_get_by_dev.part.0+0xe7/0x320
[ 3653.760661]  ? devcgroup_check_permission+0xc1/0x1f0
[ 3653.761288]  blkdev_get_by_path+0xb8/0xd0
[ 3653.761797]  btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs]
[ 3653.762454]  open_fs_devices+0xd7/0x2c0 [btrfs]
[ 3653.763055]  ? clone_fs_devices+0x8f/0x170 [btrfs]
[ 3653.763689]  btrfs_read_chunk_tree+0x3ad/0x870 [btrfs]
[ 3653.764370]  ? kvm_sched_clock_read+0x14/0x40
[ 3653.764922]  open_ctree+0xb8e/0x17bf [btrfs]
[ 3653.765493]  ? super_setup_bdi_name+0x79/0xd0
[ 3653.766043]  btrfs_mount_root.cold+0x12/0xde [btrfs]
[ 3653.766780]  ? rcu_read_lock_sched_held+0x3f/0x80
[ 3653.767488]  ? kfree+0x1f2/0x3c0
[ 3653.767979]  legacy_get_tree+0x30/0x50
[ 3653.768548]  vfs_get_tree+0x28/0xc0
[ 3653.769076]  vfs_kern_mount.part.0+0x71/0xb0
[ 3653.769718]  btrfs_mount+0x11d/0x3a0 [btrfs]
[ 3653.770381]  ? rcu_read_lock_sched_held+0x3f/0x80
[ 3653.771086]  ? kfree+0x1f2/0x3c0
[ 3653.771574]  legacy_get_tree+0x30/0x50
[ 3653.772136]  vfs_get_tree+0x28/0xc0
[ 3653.772673]  path_mount+0x2d4/0xbe0
[ 3653.773201]  __x64_sys_mount+0x103/0x140
[ 3653.773793]  do_syscall_64+0x3b/0xc0
[ 3653.774333]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3653.775094] RIP: 0033:0x7f648bc45aaa

This happens because through btrfs_read_chunk_tree(), which is called only
during mount, ends up acquiring the mutex open_mutex of a block device
while holding a read lock on a leaf of the chunk tree while other paths
need to acquire other locks before locking extent buffers of the chunk
tree.

Since at mount time when we call btrfs_read_chunk_tree() we know that
we don't have other tasks running in parallel and modifying the chunk
tree, we can simply skip locking of chunk tree extent buffers. So do
that and move the assertion that checks the fs is not yet mounted to the
top block of btrfs_read_chunk_tree(), with a comment before doing it.

Signed-off-by: Filipe Manana <[email protected]>
Signed-off-by: David Sterba <[email protected]>
digetx pushed a commit that referenced this pull request Nov 23, 2021
Protect perf_guest_cbs with RCU to fix multiple possible errors.  Luckily,
all paths that read perf_guest_cbs already require RCU protection, e.g. to
protect the callback chains, so only the direct perf_guest_cbs touchpoints
need to be modified.

Bug #1 is a simple lack of WRITE_ONCE/READ_ONCE behavior to ensure
perf_guest_cbs isn't reloaded between a !NULL check and a dereference.
Fixed via the READ_ONCE() in rcu_dereference().

Bug #2 is that on weakly-ordered architectures, updates to the callbacks
themselves are not guaranteed to be visible before the pointer is made
visible to readers.  Fixed by the smp_store_release() in
rcu_assign_pointer() when the new pointer is non-NULL.

Bug #3 is that, because the callbacks are global, it's possible for
readers to run in parallel with an unregisters, and thus a module
implementing the callbacks can be unloaded while readers are in flight,
resulting in a use-after-free.  Fixed by a synchronize_rcu() call when
unregistering callbacks.

Bug #1 escaped notice because it's extremely unlikely a compiler will
reload perf_guest_cbs in this sequence.  perf_guest_cbs does get reloaded
for future derefs, e.g. for ->is_user_mode(), but the ->is_in_guest()
guard all but guarantees the consumer will win the race, e.g. to nullify
perf_guest_cbs, KVM has to completely exit the guest and teardown down
all VMs before KVM start its module unload / unregister sequence.  This
also makes it all but impossible to encounter bug #3.

Bug #2 has not been a problem because all architectures that register
callbacks are strongly ordered and/or have a static set of callbacks.

But with help, unloading kvm_intel can trigger bug #1 e.g. wrapping
perf_guest_cbs with READ_ONCE in perf_misc_flags() while spamming
kvm_intel module load/unload leads to:

  BUG: kernel NULL pointer dereference, address: 0000000000000000
  #PF: supervisor read access in kernel mode
  #PF: error_code(0x0000) - not-present page
  PGD 0 P4D 0
  Oops: 0000 [#1] PREEMPT SMP
  CPU: 6 PID: 1825 Comm: stress Not tainted 5.14.0-rc2+ #459
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  RIP: 0010:perf_misc_flags+0x1c/0x70
  Call Trace:
   perf_prepare_sample+0x53/0x6b0
   perf_event_output_forward+0x67/0x160
   __perf_event_overflow+0x52/0xf0
   handle_pmi_common+0x207/0x300
   intel_pmu_handle_irq+0xcf/0x410
   perf_event_nmi_handler+0x28/0x50
   nmi_handle+0xc7/0x260
   default_do_nmi+0x6b/0x170
   exc_nmi+0x103/0x130
   asm_exc_nmi+0x76/0xbf

Fixes: 39447b3 ("perf: Enhance perf to allow for guest statistic collection from host")
Signed-off-by: Sean Christopherson <[email protected]>
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Reviewed-by: Paolo Bonzini <[email protected]>
Cc: [email protected]
Link: https://lore.kernel.org/r/[email protected]
digetx pushed a commit that referenced this pull request Nov 23, 2021
If an RCU expedited grace period starts just when a CPU is in the process
of going offline, so that the outgoing CPU has completed its pass through
stop-machine but has not yet completed its final dive into the idle loop,
RCU will attempt to enable that CPU's scheduling-clock tick via a call
to tick_dep_set_cpu().  For this to happen, that CPU has to have been
online when the expedited grace period completed its CPU-selection phase.

This is pointless:  The outgoing CPU has interrupts disabled, so it cannot
take a scheduling-clock tick anyway.  In addition, the tick_dep_set_cpu()
function's eventual call to irq_work_queue_on() will splat as follows:

smpboot: CPU 1 is now offline
WARNING: CPU: 6 PID: 124 at kernel/irq_work.c:95
+irq_work_queue_on+0x57/0x60
Modules linked in:
CPU: 6 PID: 124 Comm: kworker/6:2 Not tainted 5.15.0-rc1+ #3
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
+rel-1.14.0-0-g155821a-rebuilt.opensuse.org 04/01/2014
Workqueue: rcu_gp wait_rcu_exp_gp
RIP: 0010:irq_work_queue_on+0x57/0x60
Code: 8b 05 1d c7 ea 62 a9 00 00 f0 00 75 21 4c 89 ce 44 89 c7 e8
+9b 37 fa ff ba 01 00 00 00 89 d0 c3 4c 89 cf e8 3b ff ff ff eb ee <0f> 0b eb b7
+0f 0b eb db 90 48 c7 c0 98 2a 02 00 65 48 03 05 91
 6f
RSP: 0000:ffffb12cc038fe48 EFLAGS: 00010282
RAX: 0000000000000001 RBX: 0000000000005208 RCX: 0000000000000020
RDX: 0000000000000001 RSI: 0000000000000001 RDI: ffff9ad01f45a680
RBP: 000000000004c990 R08: 0000000000000001 R09: ffff9ad01f45a680
R10: ffffb12cc0317db0 R11: 0000000000000001 R12: 00000000fffecee8
R13: 0000000000000001 R14: 0000000000026980 R15: ffffffff9e53ae00
FS:  0000000000000000(0000) GS:ffff9ad01f580000(0000)
+knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000000de0c000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
 tick_nohz_dep_set_cpu+0x59/0x70
 rcu_exp_wait_wake+0x54e/0x870
 ? sync_rcu_exp_select_cpus+0x1fc/0x390
 process_one_work+0x1ef/0x3c0
 ? process_one_work+0x3c0/0x3c0
 worker_thread+0x28/0x3c0
 ? process_one_work+0x3c0/0x3c0
 kthread+0x115/0x140
 ? set_kthread_struct+0x40/0x40
 ret_from_fork+0x22/0x30
---[ end trace c5bf75eb6aa80bc6 ]---

This commit therefore avoids invoking tick_dep_set_cpu() on offlined
CPUs to limit both futility and false-positive splats.

Signed-off-by: Paul E. McKenney <[email protected]>
digetx pushed a commit that referenced this pull request Nov 30, 2021
The capture code is typically run entirely in the fence signalling
critical path. We're about to add lockdep annotation in an upcoming patch
which reveals a lockdep splat similar to the below one.

Fix the associated potential deadlocks using __GFP_KSWAPD_RECLAIM
(which is the same as GFP_WAIT, but open-coded for clarity) rather than
GFP_KERNEL for memory allocation in the capture path. This has the
potential drawback that capture might fail in situations with memory
pressure.

[  234.842048] WARNING: possible circular locking dependency detected
[  234.842050] 5.15.0-rc7+ #20 Tainted: G     U  W
[  234.842052] ------------------------------------------------------
[  234.842054] gem_exec_captur/1180 is trying to acquire lock:
[  234.842056] ffffffffa3e51c00 (fs_reclaim){+.+.}-{0:0}, at: __kmalloc+0x4d/0x330
[  234.842063]
               but task is already holding lock:
[  234.842064] ffffffffa3f57620 (dma_fence_map){++++}-{0:0}, at: i915_vma_snapshot_resource_pin+0x27/0x30 [i915]
[  234.842138]
               which lock already depends on the new lock.

[  234.842140]
               the existing dependency chain (in reverse order) is:
[  234.842142]
               -> #2 (dma_fence_map){++++}-{0:0}:
[  234.842145]        __dma_fence_might_wait+0x41/0xa0
[  234.842149]        dma_resv_lockdep+0x1dc/0x28f
[  234.842151]        do_one_initcall+0x58/0x2d0
[  234.842154]        kernel_init_freeable+0x273/0x2bf
[  234.842157]        kernel_init+0x16/0x120
[  234.842160]        ret_from_fork+0x1f/0x30
[  234.842163]
               -> #1 (mmu_notifier_invalidate_range_start){+.+.}-{0:0}:
[  234.842166]        fs_reclaim_acquire+0x6d/0xd0
[  234.842168]        __kmalloc_node+0x51/0x3a0
[  234.842171]        alloc_cpumask_var_node+0x1b/0x30
[  234.842174]        native_smp_prepare_cpus+0xc7/0x292
[  234.842177]        kernel_init_freeable+0x160/0x2bf
[  234.842179]        kernel_init+0x16/0x120
[  234.842181]        ret_from_fork+0x1f/0x30
[  234.842184]
               -> #0 (fs_reclaim){+.+.}-{0:0}:
[  234.842186]        __lock_acquire+0x1161/0x1dc0
[  234.842189]        lock_acquire+0xb5/0x2b0
[  234.842192]        fs_reclaim_acquire+0xa1/0xd0
[  234.842193]        __kmalloc+0x4d/0x330
[  234.842196]        i915_vma_coredump_create+0x78/0x5b0 [i915]
[  234.842253]        intel_engine_coredump_add_vma+0x36/0xe0 [i915]
[  234.842307]        __i915_gpu_coredump+0x290/0x5e0 [i915]
[  234.842365]        i915_capture_error_state+0x57/0xa0 [i915]
[  234.842415]        intel_gt_handle_error+0x348/0x3e0 [i915]
[  234.842462]        intel_gt_debugfs_reset_store+0x3c/0x90 [i915]
[  234.842504]        simple_attr_write+0xc1/0xe0
[  234.842507]        full_proxy_write+0x53/0x80
[  234.842509]        vfs_write+0xbc/0x350
[  234.842513]        ksys_write+0x58/0xd0
[  234.842514]        do_syscall_64+0x38/0x90
[  234.842516]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[  234.842519]
               other info that might help us debug this:

[  234.842521] Chain exists of:
                 fs_reclaim --> mmu_notifier_invalidate_range_start --> dma_fence_map

[  234.842526]  Possible unsafe locking scenario:

[  234.842528]        CPU0                    CPU1
[  234.842529]        ----                    ----
[  234.842531]   lock(dma_fence_map);
[  234.842532]                                lock(mmu_notifier_invalidate_range_start);
[  234.842535]                                lock(dma_fence_map);
[  234.842537]   lock(fs_reclaim);
[  234.842539]
                *** DEADLOCK ***

[  234.842540] 4 locks held by gem_exec_captur/1180:
[  234.842543]  #0: ffff9007812d9460 (sb_writers#17){.+.+}-{0:0}, at: ksys_write+0x58/0xd0
[  234.842547]  #1: ffff900781d9ecb8 (&attr->mutex){+.+.}-{3:3}, at: simple_attr_write+0x3a/0xe0
[  234.842552]  #2: ffffffffc11913a8 (capture_mutex){+.+.}-{3:3}, at: i915_capture_error_state+0x1a/0xa0 [i915]
[  234.842602]  #3: ffffffffa3f57620 (dma_fence_map){++++}-{0:0}, at: i915_vma_snapshot_resource_pin+0x27/0x30 [i915]
[  234.842656]
               stack backtrace:
[  234.842658] CPU: 0 PID: 1180 Comm: gem_exec_captur Tainted: G     U  W         5.15.0-rc7+ #20
[  234.842661] Hardware name: ASUS System Product Name/PRIME B560M-A AC, BIOS 0403 01/26/2021
[  234.842664] Call Trace:
[  234.842666]  dump_stack_lvl+0x57/0x72
[  234.842669]  check_noncircular+0xde/0x100
[  234.842672]  ? __lock_acquire+0x3bf/0x1dc0
[  234.842675]  __lock_acquire+0x1161/0x1dc0
[  234.842678]  lock_acquire+0xb5/0x2b0
[  234.842680]  ? __kmalloc+0x4d/0x330
[  234.842683]  ? finish_task_switch.isra.0+0xf2/0x360
[  234.842686]  ? i915_vma_coredump_create+0x78/0x5b0 [i915]
[  234.842734]  fs_reclaim_acquire+0xa1/0xd0
[  234.842737]  ? __kmalloc+0x4d/0x330
[  234.842739]  __kmalloc+0x4d/0x330
[  234.842742]  i915_vma_coredump_create+0x78/0x5b0 [i915]
[  234.842793]  ? capture_vma+0xbe/0x110 [i915]
[  234.842844]  intel_engine_coredump_add_vma+0x36/0xe0 [i915]
[  234.842892]  __i915_gpu_coredump+0x290/0x5e0 [i915]
[  234.842939]  i915_capture_error_state+0x57/0xa0 [i915]
[  234.842985]  intel_gt_handle_error+0x348/0x3e0 [i915]
[  234.843032]  ? __mutex_lock+0x81/0x830
[  234.843035]  ? simple_attr_write+0x3a/0xe0
[  234.843038]  ? __lock_acquire+0x3bf/0x1dc0
[  234.843041]  intel_gt_debugfs_reset_store+0x3c/0x90 [i915]
[  234.843083]  ? _copy_from_user+0x45/0x80
[  234.843086]  simple_attr_write+0xc1/0xe0
[  234.843089]  full_proxy_write+0x53/0x80
[  234.843091]  vfs_write+0xbc/0x350
[  234.843094]  ksys_write+0x58/0xd0
[  234.843096]  do_syscall_64+0x38/0x90
[  234.843098]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[  234.843101] RIP: 0033:0x7fa467480877
[  234.843103] Code: 75 05 48 83 c4 58 c3 e8 37 4e ff ff 0f 1f 80 00 00 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 48 89 54 24 18 48 89 74 24
[  234.843108] RSP: 002b:00007ffd14d79b08 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[  234.843112] RAX: ffffffffffffffda RBX: 00007ffd14d79b60 RCX: 00007fa467480877
[  234.843114] RDX: 0000000000000014 RSI: 00007ffd14d79b60 RDI: 0000000000000007
[  234.843116] RBP: 0000000000000007 R08: 0000000000000000 R09: 00007ffd14d79ab0
[  234.843119] R10: ffffffffffffffff R11: 0000000000000246 R12: 0000000000000014
[  234.843121] R13: 0000000000000000 R14: 00007ffd14d79b60 R15: 0000000000000005

v5:
- Use __GFP_KSWAPD_RECLAIM rather than __GFP_NOWAIT for clarity.
  (Daniel Vetter)
v6:
- Include an instance in execlists_capture_work().
- Rework the commit message due to patch reordering.

Signed-off-by: Thomas Hellström <[email protected]>
Reviewed-by: Ramalingam C <[email protected]>
Link: https://patchwork.freedesktop.org/patch/msgid/[email protected]
digetx pushed a commit that referenced this pull request Dec 2, 2021
If an RCU expedited grace period starts just when a CPU is in the process
of going offline, so that the outgoing CPU has completed its pass through
stop-machine but has not yet completed its final dive into the idle loop,
RCU will attempt to enable that CPU's scheduling-clock tick via a call
to tick_dep_set_cpu().  For this to happen, that CPU has to have been
online when the expedited grace period completed its CPU-selection phase.

This is pointless:  The outgoing CPU has interrupts disabled, so it cannot
take a scheduling-clock tick anyway.  In addition, the tick_dep_set_cpu()
function's eventual call to irq_work_queue_on() will splat as follows:

smpboot: CPU 1 is now offline
WARNING: CPU: 6 PID: 124 at kernel/irq_work.c:95
+irq_work_queue_on+0x57/0x60
Modules linked in:
CPU: 6 PID: 124 Comm: kworker/6:2 Not tainted 5.15.0-rc1+ #3
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
+rel-1.14.0-0-g155821a-rebuilt.opensuse.org 04/01/2014
Workqueue: rcu_gp wait_rcu_exp_gp
RIP: 0010:irq_work_queue_on+0x57/0x60
Code: 8b 05 1d c7 ea 62 a9 00 00 f0 00 75 21 4c 89 ce 44 89 c7 e8
+9b 37 fa ff ba 01 00 00 00 89 d0 c3 4c 89 cf e8 3b ff ff ff eb ee <0f> 0b eb b7
+0f 0b eb db 90 48 c7 c0 98 2a 02 00 65 48 03 05 91
 6f
RSP: 0000:ffffb12cc038fe48 EFLAGS: 00010282
RAX: 0000000000000001 RBX: 0000000000005208 RCX: 0000000000000020
RDX: 0000000000000001 RSI: 0000000000000001 RDI: ffff9ad01f45a680
RBP: 000000000004c990 R08: 0000000000000001 R09: ffff9ad01f45a680
R10: ffffb12cc0317db0 R11: 0000000000000001 R12: 00000000fffecee8
R13: 0000000000000001 R14: 0000000000026980 R15: ffffffff9e53ae00
FS:  0000000000000000(0000) GS:ffff9ad01f580000(0000)
+knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000000de0c000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
 tick_nohz_dep_set_cpu+0x59/0x70
 rcu_exp_wait_wake+0x54e/0x870
 ? sync_rcu_exp_select_cpus+0x1fc/0x390
 process_one_work+0x1ef/0x3c0
 ? process_one_work+0x3c0/0x3c0
 worker_thread+0x28/0x3c0
 ? process_one_work+0x3c0/0x3c0
 kthread+0x115/0x140
 ? set_kthread_struct+0x40/0x40
 ret_from_fork+0x22/0x30
---[ end trace c5bf75eb6aa80bc6 ]---

This commit therefore avoids invoking tick_dep_set_cpu() on offlined
CPUs to limit both futility and false-positive splats.

Signed-off-by: Paul E. McKenney <[email protected]>
digetx pushed a commit that referenced this pull request Dec 4, 2021
When branch target identifiers are in use, code reachable via an
indirect branch requires a BTI landing pad at the branch target site.

When building FTRACE_WITH_REGS atop patchable-function-entry, we miss
BTIs at the start start of the `ftrace_caller` and `ftrace_regs_caller`
trampolines, and when these are called from a module via a PLT (which
will use a `BR X16`), we will encounter a BTI failure, e.g.

| # insmod lkdtm.ko
| lkdtm: No crash points registered, enable through debugfs
| # echo function_graph > /sys/kernel/debug/tracing/current_tracer
| # cat /sys/kernel/debug/provoke-crash/DIRECT
| Unhandled 64-bit el1h sync exception on CPU0, ESR 0x34000001 -- BTI
| CPU: 0 PID: 174 Comm: cat Not tainted 5.16.0-rc2-dirty #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 60400405 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=jc)
| pc : ftrace_caller+0x0/0x3c
| lr : lkdtm_debugfs_open+0xc/0x20 [lkdtm]
| sp : ffff800012e43b00
| x29: ffff800012e43b00 x28: 0000000000000000 x27: ffff800012e43c88
| x26: 0000000000000000 x25: 0000000000000000 x24: ffff0000c171f200
| x23: ffff0000c27b1e00 x22: ffff0000c2265240 x21: ffff0000c23c8c30
| x20: ffff8000090ba380 x19: 0000000000000000 x18: 0000000000000000
| x17: 0000000000000000 x16: ffff80001002bb4c x15: 0000000000000000
| x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000900ff0
| x11: ffff0000c4166310 x10: ffff800012e43b00 x9 : ffff8000104f2384
| x8 : 0000000000000001 x7 : 0000000000000000 x6 : 000000000000003f
| x5 : 0000000000000040 x4 : ffff800012e43af0 x3 : 0000000000000001
| x2 : ffff8000090b0000 x1 : ffff0000c171f200 x0 : ffff0000c23c8c30
| Kernel panic - not syncing: Unhandled exception
| CPU: 0 PID: 174 Comm: cat Not tainted 5.16.0-rc2-dirty #3
| Hardware name: linux,dummy-virt (DT)
| Call trace:
|  dump_backtrace+0x0/0x1a4
|  show_stack+0x24/0x30
|  dump_stack_lvl+0x68/0x84
|  dump_stack+0x1c/0x38
|  panic+0x168/0x360
|  arm64_exit_nmi.isra.0+0x0/0x80
|  el1h_64_sync_handler+0x68/0xd4
|  el1h_64_sync+0x78/0x7c
|  ftrace_caller+0x0/0x3c
|  do_dentry_open+0x134/0x3b0
|  vfs_open+0x38/0x44
|  path_openat+0x89c/0xe40
|  do_filp_open+0x8c/0x13c
|  do_sys_openat2+0xbc/0x174
|  __arm64_sys_openat+0x6c/0xbc
|  invoke_syscall+0x50/0x120
|  el0_svc_common.constprop.0+0xdc/0x100
|  do_el0_svc+0x84/0xa0
|  el0_svc+0x28/0x80
|  el0t_64_sync_handler+0xa8/0x130
|  el0t_64_sync+0x1a0/0x1a4
| SMP: stopping secondary CPUs
| Kernel Offset: disabled
| CPU features: 0x0,00000f42,da660c5f
| Memory Limit: none
| ---[ end Kernel panic - not syncing: Unhandled exception ]---

Fix this by adding the required `BTI C`, as we only require these to be
reachable via BL for direct calls or BR X16/X17 for PLTs. For now, these
are open-coded in the function prologue, matching the style of the
`__hwasan_tag_mismatch` trampoline.

In future we may wish to consider adding a new SYM_CODE_START_*()
variant which has an implicit BTI.

When ftrace is built atop mcount, the trampolines are marked with
SYM_FUNC_START(), and so get an implicit BTI. We may need to change
these over to SYM_CODE_START() in future for RELIABLE_STACKTRACE, in
case we need to apply special care aroud the return address being
rewritten.

Fixes: 97fed77 ("arm64: bti: Provide Kconfig for kernel mode BTI")
Signed-off-by: Mark Rutland <[email protected]>
Cc: Catalin Marinas <[email protected]>
Cc: Mark Brown <[email protected]>
Cc: Will Deacon <[email protected]>
Reviewed-by: Mark Brown <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Will Deacon <[email protected]>
digetx pushed a commit that referenced this pull request Jan 16, 2022
Change the 9p filesystem to take account of the changes to fscache's
indexing rewrite and reenable caching in 9p.

The following changes have been made:

 (1) The fscache_netfs struct is no more, and there's no need to register
     the filesystem as a whole.

 (2) The session cookie is now an fscache_volume cookie, allocated with
     fscache_acquire_volume().  That takes three parameters: a string
     representing the "volume" in the index, a string naming the cache to
     use (or NULL) and a u64 that conveys coherency metadata for the
     volume.

     For 9p, I've made it render the volume name string as:

	"9p,<devname>,<cachetag>"

     where the cachetag is replaced by the aname if it wasn't supplied.

     This probably needs rethinking a bit as the aname can have slashes in
     it.  It might be better to hash the cachetag and use the hash or I
     could substitute commas for the slashes or something.

 (3) The fscache_cookie_def is no more and needed information is passed
     directly to fscache_acquire_cookie().  The cache no longer calls back
     into the filesystem, but rather metadata changes are indicated at
     other times.

     fscache_acquire_cookie() is passed the same keying and coherency
     information as before.

 (4) The functions to set/reset/flush cookies are removed and
     fscache_use_cookie() and fscache_unuse_cookie() are used instead.

     fscache_use_cookie() is passed a flag to indicate if the cookie is
     opened for writing.  fscache_unuse_cookie() is passed updates for the
     metadata if we changed it (ie. if the file was opened for writing).

     These are called when the file is opened or closed.

 (5) wait_on_page_bit[_killable]() is replaced with the specific wait
     functions for the bits waited upon.

 (6) I've got rid of some of the 9p-specific cache helper functions and
     called things like fscache_relinquish_cookie() directly as they'll
     optimise away if v9fs_inode_cookie() returns an unconditional NULL
     (which will be the case if CONFIG_9P_FSCACHE=n).

 (7) v9fs_vfs_setattr() is made to call fscache_resize() to change the size
     of the cache object.

Notes:

 (A) We should call fscache_invalidate() if we detect that the server's
     copy of a file got changed by a third party, but I don't know where to
     do that.  We don't need to do that when allocating the cookie as we
     get a check-and-invalidate when we initially bind to the cache object.

 (B) The copy-to-cache-on-writeback side of things will be handled in
     separate patch.

Changes
=======
ver #3:
 - Canonicalise the cookie key and coherency data to make them
   endianness-independent.

ver #2:
 - Use gfpflags_allow_blocking() rather than using flag directly.
 - fscache_acquire_volume() now returns errors.

Signed-off-by: David Howells <[email protected]>
Acked-by: Jeff Layton <[email protected]>
Tested-by: Dominique Martinet <[email protected]>
cc: Eric Van Hensbergen <[email protected]>
cc: Latchesar Ionkov <[email protected]>
cc: [email protected]
cc: [email protected]
Link: https://lore.kernel.org/r/163819664645.215744.1555314582005286846.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906975017.143852.3459573173204394039.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967178512.1823006.17377493641569138183.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021573143.640689.3977487095697717967.stgit@warthog.procyon.org.uk/ # v4
digetx pushed a commit that referenced this pull request Jan 16, 2022
When writing to the server from v9fs_vfs_writepage(), copy the data to the
cache object too.

To make this possible, the cookie must have its active users count
incremented when the page is dirtied and kept incremented until we manage
to clean up all the pages.  This allows the writeback to take place after
the last file struct is released.

This is done by taking a use on the cookie in v9fs_set_page_dirty() if we
haven't already done so (controlled by the I_PINNING_FSCACHE_WB flag) and
dropping the pin in v9fs_write_inode() if __writeback_single_inode() clears
all the outstanding dirty pages (conveyed by the unpinned_fscache_wb flag
in the writeback_control struct).

Inode eviction must also clear the flag after truncating away all the
outstanding pages.

In the future this will be handled more gracefully by netfslib.

Changes
=======
ver #3:
 - Canonicalise the coherency data to make it endianness-independent.

ver #2:
 - Fix an unused-var warning due to CONFIG_9P_FSCACHE=n[1].

Signed-off-by: David Howells <[email protected]>
Acked-by: Jeff Layton <[email protected]>
Tested-by: Dominique Martinet <[email protected]>
cc: Eric Van Hensbergen <[email protected]>
cc: Latchesar Ionkov <[email protected]>
cc: [email protected]
cc: [email protected]
Link: https://lore.kernel.org/r/163819667027.215744.13815687931204222995.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906978015.143852.10646669694345706328.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967180760.1823006.5831751873616248910.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021574522.640689.13849966660182529125.stgit@warthog.procyon.org.uk/ # v4
digetx pushed a commit that referenced this pull request Jan 16, 2022
Change the nfs filesystem to support fscache's indexing rewrite and
reenable caching in nfs.

The following changes have been made:

 (1) The fscache_netfs struct is no more, and there's no need to register
     the filesystem as a whole.

 (2) The session cookie is now an fscache_volume cookie, allocated with
     fscache_acquire_volume().  That takes three parameters: a string
     representing the "volume" in the index, a string naming the cache to
     use (or NULL) and a u64 that conveys coherency metadata for the
     volume.

     For nfs, I've made it render the volume name string as:

        "nfs,<ver>,<family>,<address>,<port>,<fsidH>,<fsidL>*<,param>[,<uniq>]"

 (3) The fscache_cookie_def is no more and needed information is passed
     directly to fscache_acquire_cookie().  The cache no longer calls back
     into the filesystem, but rather metadata changes are indicated at
     other times.

     fscache_acquire_cookie() is passed the same keying and coherency
     information as before.

 (4) fscache_enable/disable_cookie() have been removed.

     Call fscache_use_cookie() and fscache_unuse_cookie() when a file is
     opened or closed to prevent a cache file from being culled and to keep
     resources to hand that are needed to do I/O.

     If a file is opened for writing, we invalidate it with
     FSCACHE_INVAL_DIO_WRITE in lieu of doing writeback to the cache,
     thereby making it cease caching until all currently open files are
     closed.  This should give the same behaviour as the uptream code.
     Making the cache store local modifications isn't straightforward for
     NFS, so that's left for future patches.

 (5) fscache_invalidate() now needs to be given uptodate auxiliary data and
     a file size.  It also takes a flag to indicate if this was due to a
     DIO write.

 (6) Call nfs_fscache_invalidate() with FSCACHE_INVAL_DIO_WRITE on a file
     to which a DIO write is made.

 (7) Call fscache_note_page_release() from nfs_release_page().

 (8) Use a killable wait in nfs_vm_page_mkwrite() when waiting for
     PG_fscache to be cleared.

 (9) The functions to read and write data to/from the cache are stubbed out
     pending a conversion to use netfslib.

Changes
=======
ver #3:
 - Added missing =n fallback for nfs_fscache_release_file()[1][2].

ver #2:
 - Use gfpflags_allow_blocking() rather than using flag directly.
 - fscache_acquire_volume() now returns errors.
 - Remove NFS_INO_FSCACHE as it's no longer used.
 - Need to unuse a cookie on file-release, not inode-clear.

Signed-off-by: Dave Wysochanski <[email protected]>
Co-developed-by: David Howells <[email protected]>
Signed-off-by: David Howells <[email protected]>
Tested-by: Dave Wysochanski <[email protected]>
Acked-by: Jeff Layton <[email protected]>
cc: Trond Myklebust <[email protected]>
cc: Anna Schumaker <[email protected]>
cc: [email protected]
cc: [email protected]
Link: https://lore.kernel.org/r/[email protected]/ [1]
Link: https://lore.kernel.org/r/[email protected]/ [2]
Link: https://lore.kernel.org/r/163819668938.215744.14448852181937731615.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906979003.143852.2601189243864854724.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967182112.1823006.7791504655391213379.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021575950.640689.12069642327533368467.stgit@warthog.procyon.org.uk/ # v4
digetx pushed a commit that referenced this pull request Jan 16, 2022
Move NFS to using fscache DIO API instead of the old upstream I/O API as
that has been removed.  This is a stopgap solution as the intention is that
at sometime in the future, the cache will move to using larger blocks and
won't be able to store individual pages in order to deal with the potential
for data corruption due to the backing filesystem being able insert/remove
bridging blocks of zeros into its extent list[1].

NFS then reads and writes cache pages synchronously and one page at a time.

The preferred change would be to use the netfs lib, but the new I/O API can
be used directly.  It's just that as the cache now needs to track data for
itself, caching blocks may exceed page size...

This code is somewhat borrowed from my "fallback I/O" patchset[2].

Changes
=======
ver #3:
 - Restore lost =n fallback for nfs_fscache_release_page()[2].

Signed-off-by: David Howells <[email protected]>
Tested-by: Dave Wysochanski <[email protected]>
Acked-by: Jeff Layton <[email protected]>
cc: Trond Myklebust <[email protected]>
cc: Anna Schumaker <[email protected]>
cc: [email protected]
cc: [email protected]
Link: https://lore.kernel.org/r/[email protected] [1]
Link: https://lore.kernel.org/r/[email protected]/ [2]
Link: https://lore.kernel.org/r/163189108292.2509237.12615909591150927232.stgit@warthog.procyon.org.uk/ [2]
Link: https://lore.kernel.org/r/163906981318.143852.17220018647843475985.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967184451.1823006.6450645559828329590.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021577632.640689.11069627070150063812.stgit@warthog.procyon.org.uk/ # v4
digetx pushed a commit that referenced this pull request Jan 16, 2022
Rewrite the fscache documentation.

Changes
=======
ver #3:
 - The volume coherency data is now an arbitrarily-sized blob, not a u64.

ver #2:
 - Put quoting around some bits of C being referred to in the docs[1].
 - Stripped the markup off the ref to the netfs lib doc[2].

Signed-off-by: David Howells <[email protected]>
Reviewed-by: Jeff Layton <[email protected]>
cc: [email protected]
Link: https://lore.kernel.org/r/[email protected]/ [1]
Link: https://lore.kernel.org/r/[email protected]/ [2]
Link: https://lore.kernel.org/r/163819672252.215744.15454333549935901588.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906986754.143852.17703291789683936950.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967193834.1823006.15991526817786159772.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021585970.640689.3162537597817521032.stgit@warthog.procyon.org.uk/ # v4
digetx pushed a commit that referenced this pull request Jan 16, 2022
If the key is already present then free the key used for lookup.

Found with:
$ perf stat -M IO_Read_BW /bin/true

==1749112==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 32 byte(s) in 4 object(s) allocated from:
    #0 0x7f6f6fa7d7cf in __interceptor_malloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:145
    #1 0x55acecd9d7a6 in check_per_pkg util/stat.c:343
    #2 0x55acecd9d9c5 in process_counter_values util/stat.c:365
    #3 0x55acecd9e0ab in process_counter_maps util/stat.c:421
    #4 0x55acecd9e292 in perf_stat_process_counter util/stat.c:443
    #5 0x55aceca8553e in read_counters ./tools/perf/builtin-stat.c:470
    #6 0x55aceca88fe3 in __run_perf_stat ./tools/perf/builtin-stat.c:1023
    #7 0x55aceca89146 in run_perf_stat ./tools/perf/builtin-stat.c:1048
    #8 0x55aceca90858 in cmd_stat ./tools/perf/builtin-stat.c:2555
    #9 0x55acecc05fa5 in run_builtin ./tools/perf/perf.c:313
    #10 0x55acecc064fe in handle_internal_command ./tools/perf/perf.c:365
    #11 0x55acecc068bb in run_argv ./tools/perf/perf.c:409
    #12 0x55acecc070aa in main ./tools/perf/perf.c:539

Reviewed-by: James Clark <[email protected]>
Signed-off-by: Ian Rogers <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Andi Kleen <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: John Garry <[email protected]>
Cc: Kajol Jain <[email protected]>
Cc: Kan Liang <[email protected]>
Cc: Leo Yan <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Mathieu Poirier <[email protected]>
Cc: Mike Leach <[email protected]>
Cc: Namhyung Kim <[email protected]>
Cc: Paul Clarke <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Riccardo Mancini <[email protected]>
Cc: Stephane Eranian <[email protected]>
Cc: Suzuki Poulouse <[email protected]>
Cc: Vineet Singh <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
digetx pushed a commit that referenced this pull request Jan 16, 2022
Change the cifs filesystem to take account of the changes to fscache's
indexing rewrite and reenable caching in cifs.

The following changes have been made:

 (1) The fscache_netfs struct is no more, and there's no need to register
     the filesystem as a whole.

 (2) The session cookie is now an fscache_volume cookie, allocated with
     fscache_acquire_volume().  That takes three parameters: a string
     representing the "volume" in the index, a string naming the cache to
     use (or NULL) and a u64 that conveys coherency metadata for the
     volume.

     For cifs, I've made it render the volume name string as:

	"cifs,<ipaddress>,<sharename>"

     where the sharename has '/' characters replaced with ';'.

     This probably needs rethinking a bit as the total name could exceed
     the maximum filename component length.

     Further, the coherency data is currently just set to 0.  It needs
     something else doing with it - I wonder if it would suffice simply to
     sum the resource_id, vol_create_time and vol_serial_number or maybe
     hash them.

 (3) The fscache_cookie_def is no more and needed information is passed
     directly to fscache_acquire_cookie().  The cache no longer calls back
     into the filesystem, but rather metadata changes are indicated at
     other times.

     fscache_acquire_cookie() is passed the same keying and coherency
     information as before.

 (4) The functions to set/reset cookies are removed and
     fscache_use_cookie() and fscache_unuse_cookie() are used instead.

     fscache_use_cookie() is passed a flag to indicate if the cookie is
     opened for writing.  fscache_unuse_cookie() is passed updates for the
     metadata if we changed it (ie. if the file was opened for writing).

     These are called when the file is opened or closed.

 (5) cifs_setattr_*() are made to call fscache_resize() to change the size
     of the cache object.

 (6) The functions to read and write data are stubbed out pending a
     conversion to use netfslib.

Changes
=======
ver #7:
 - Removed the accidentally added-back call to get the super cookie in
   cifs_root_iget().
 - Fixed the right call to cifs_fscache_get_super_cookie() to take account
   of the "-o fsc" mount flag.

ver #6:
 - Moved the change of gfpflags_allow_blocking() to current_is_kswapd() for
   cifs here.
 - Fixed one of the error paths in cifs_atomic_open() to jump around the
   call to use the cookie.
 - Fixed an additional successful return in the middle of cifs_open() to
   use the cookie on the way out.
 - Only get a volume cookie (and thus inode cookies) when "-o fsc" is
   supplied to mount.

ver #5:
 - Fixed a couple of bits of cookie handling[2]:
   - The cookie should be released in cifs_evict_inode(), not
     cifsFileInfo_put_final().  The cookie needs to persist beyond file
     closure so that writepages will be able to write to it.
   - fscache_use_cookie() needs to be called in cifs_atomic_open() as it is
     for cifs_open().

ver #4:
 - Fixed the use of sizeof with memset.
 - tcon->vol_create_time is __le64 so doesn't need cpu_to_le64().

ver #3:
 - Canonicalise the cifs coherency data to make the cache portable.
 - Set volume coherency data.

ver #2:
 - Use gfpflags_allow_blocking() rather than using flag directly.
 - Upgraded to -rc4 to allow for upstream changes[1].
 - fscache_acquire_volume() now returns errors.

Signed-off-by: David Howells <[email protected]>
Acked-by: Jeff Layton <[email protected]>
cc: Steve French <[email protected]>
cc: Shyam Prasad N <[email protected]>
cc: [email protected]
cc: [email protected]
Link: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=23b55d673d7527b093cd97b7c217c82e70cd1af0 [1]
Link: https://lore.kernel.org/r/[email protected]/ [2]
Link: https://lore.kernel.org/r/163819671009.215744.11230627184193298714.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906982979.143852.10672081929614953210.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967187187.1823006.247415138444991444.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021579335.640689.2681324337038770579.stgit@warthog.procyon.org.uk/ # v4
Link: https://lore.kernel.org/r/[email protected]/ # v5
Link: https://lore.kernel.org/r/[email protected]/ # v6
jonasschwoebel pushed a commit to Open-Surface-RT/grate-linux that referenced this pull request Oct 21, 2022
btrfs_can_activate_zone() can be called with the device_list_mutex already
held, which will lead to a deadlock:

insert_dev_extents() // Takes device_list_mutex
`-> insert_dev_extent()
 `-> btrfs_insert_empty_item()
  `-> btrfs_insert_empty_items()
   `-> btrfs_search_slot()
    `-> btrfs_cow_block()
     `-> __btrfs_cow_block()
      `-> btrfs_alloc_tree_block()
       `-> btrfs_reserve_extent()
        `-> find_free_extent()
         `-> find_free_extent_update_loop()
          `-> can_allocate_chunk()
           `-> btrfs_can_activate_zone() // Takes device_list_mutex again

As we're only traversing the list for reads we can switch from the
device_list_mutex to an RCU traversal of the list.

  [15.166572] WARNING: possible recursive locking detected
  [15.167117] 5.17.0-rc6-dennis grate-driver#79 Not tainted
  [15.167487] --------------------------------------------
  [15.167733] kworker/u8:3/146 is trying to acquire lock:
  [15.167733] ffff888102962ee0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: find_free_extent+0x15a/0x14f0 [btrfs]
  [15.167733]
  [15.167733] but task is already holding lock:
  [15.167733] ffff888102962ee0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: btrfs_create_pending_block_groups+0x20a/0x560 [btrfs]
  [15.167733]
  [15.167733] other info that might help us debug this:
  [15.167733]  Possible unsafe locking scenario:
  [15.167733]
  [15.171834]        CPU0
  [15.171834]        ----
  [15.171834]   lock(&fs_devs->device_list_mutex);
  [15.171834]   lock(&fs_devs->device_list_mutex);
  [15.171834]
  [15.171834]  *** DEADLOCK ***
  [15.171834]
  [15.171834]  May be due to missing lock nesting notation
  [15.171834]
  [15.171834] 5 locks held by kworker/u8:3/146:
  [15.171834]  #0: ffff888100050938 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work+0x1c3/0x5a0
  [15.171834]  #1: ffffc9000067be80 ((work_completion)(&fs_info->async_data_reclaim_work)){+.+.}-{0:0}, at: process_one_work+0x1c3/0x5a0
  [15.176244]  #2: ffff88810521e620 (sb_internal){.+.+}-{0:0}, at: flush_space+0x335/0x600 [btrfs]
  [15.176244]  grate-driver#3: ffff888102962ee0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: btrfs_create_pending_block_groups+0x20a/0x560 [btrfs]
  [15.176244]  grate-driver#4: ffff8881152e4b78 (btrfs-dev-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x130 [btrfs]
  [15.179641]
  [15.179641] stack backtrace:
  [15.179641] CPU: 1 PID: 146 Comm: kworker/u8:3 Not tainted 5.17.0-rc6-dennis grate-driver#79
  [15.179641] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1.fc35 04/01/2014
  [15.179641] Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs]
  [15.179641] Call Trace:
  [15.179641]  <TASK>
  [15.179641]  dump_stack_lvl+0x45/0x59
  [15.179641]  __lock_acquire.cold+0x217/0x2b2
  [15.179641]  lock_acquire+0xbf/0x2b0
  [15.183838]  ? find_free_extent+0x15a/0x14f0 [btrfs]
  [15.183838]  __mutex_lock+0x8e/0x970
  [15.183838]  ? find_free_extent+0x15a/0x14f0 [btrfs]
  [15.183838]  ? find_free_extent+0x15a/0x14f0 [btrfs]
  [15.183838]  ? lock_is_held_type+0xd7/0x130
  [15.183838]  ? find_free_extent+0x15a/0x14f0 [btrfs]
  [15.183838]  find_free_extent+0x15a/0x14f0 [btrfs]
  [15.183838]  ? _raw_spin_unlock+0x24/0x40
  [15.183838]  ? btrfs_get_alloc_profile+0x106/0x230 [btrfs]
  [15.187601]  btrfs_reserve_extent+0x131/0x260 [btrfs]
  [15.187601]  btrfs_alloc_tree_block+0xb5/0x3b0 [btrfs]
  [15.187601]  __btrfs_cow_block+0x138/0x600 [btrfs]
  [15.187601]  btrfs_cow_block+0x10f/0x230 [btrfs]
  [15.187601]  btrfs_search_slot+0x55f/0xbc0 [btrfs]
  [15.187601]  ? lock_is_held_type+0xd7/0x130
  [15.187601]  btrfs_insert_empty_items+0x2d/0x60 [btrfs]
  [15.187601]  btrfs_create_pending_block_groups+0x2b3/0x560 [btrfs]
  [15.187601]  __btrfs_end_transaction+0x36/0x2a0 [btrfs]
  [15.192037]  flush_space+0x374/0x600 [btrfs]
  [15.192037]  ? find_held_lock+0x2b/0x80
  [15.192037]  ? btrfs_async_reclaim_data_space+0x49/0x180 [btrfs]
  [15.192037]  ? lock_release+0x131/0x2b0
  [15.192037]  btrfs_async_reclaim_data_space+0x70/0x180 [btrfs]
  [15.192037]  process_one_work+0x24c/0x5a0
  [15.192037]  worker_thread+0x4a/0x3d0

Fixes: a85f05e ("btrfs: zoned: avoid chunk allocation if active block group has enough space")
CC: [email protected] # 5.16+
Signed-off-by: Johannes Thumshirn <[email protected]>
Reviewed-by: David Sterba <[email protected]>
Signed-off-by: David Sterba <[email protected]>
jonasschwoebel pushed a commit to Open-Surface-RT/grate-linux that referenced this pull request Oct 21, 2022
netfs has a number of lists of symbols for use in tracing, listed in an
enum and then listed again in a symbol->string mapping for use with
__print_symbolic().  This is, however, redundant.

Instead, use the symbol->string mapping list to also generate the enum
where the enum is in the same file.

Changes
=======
ver grate-driver#3)
 - #undef EM and E_ at the end of the trace file[1].

Signed-off-by: David Howells <[email protected]>
Acked-by: Jeff Layton <[email protected]>
cc: [email protected]
Link: https://lore.kernel.org/r/[email protected]/ [1]
Link: https://lore.kernel.org/r/164622980839.3564931.5673300162465266909.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/164678192454.1200972.4428834328108580460.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/CALF+zOkB38_MB5QwNUtqTU4WjMaLUJ5+Piwsn3pMxkO3d4J7Kg@mail.gmail.com/ # v2
jonasschwoebel pushed a commit to Open-Surface-RT/grate-linux that referenced this pull request Oct 21, 2022
Pass start and len to the rreq allocator. This should ensure that the
fields are set so that ->init_request() can use them.

Also add a parameter to indicates the origin of the request.  Ceph can use
this to tell whether to get caps.

Changes
=======
ver grate-driver#3)
 - Change the author to me as Jeff feels that most of the patch is my
   changes now.

ver #2)
 - Show the request origin in the netfs_rreq tracepoint.

Signed-off-by: Jeff Layton <[email protected]>
Co-developed-by: David Howells <[email protected]>
Signed-off-by: David Howells <[email protected]>
cc: [email protected]
Link: https://lore.kernel.org/r/164622989020.3564931.17517006047854958747.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/164678208569.1200972.12153682697842916557.stgit@warthog.procyon.org.uk/ # v2
jonasschwoebel pushed a commit to Open-Surface-RT/grate-linux that referenced this pull request Oct 21, 2022
Move the caps check from ceph_readahead() to ceph_init_request(),
conditional on the origin being NETFS_READAHEAD so that in a future patch,
ceph can point its ->readahead() vector directly at netfs_readahead().

Changes
=======
ver grate-driver#3)
 - Split from the patch to add a netfs inode context[1].
 - Need to store the caps got in rreq->netfs_priv for later freeing.

Signed-off-by: David Howells <[email protected]>
cc: [email protected]
cc: [email protected]
Link: https://lore.kernel.org/r/[email protected]/ [1]
jonasschwoebel pushed a commit to Open-Surface-RT/grate-linux that referenced this pull request Oct 21, 2022
Add a netfs_i_context struct that should be included in the network
filesystem's own inode struct wrapper, directly after the VFS's inode
struct, e.g.:

	struct my_inode {
		struct {
			struct inode		vfs_inode;
			struct netfs_i_context	netfs_ctx;
		};
	};

The netfs_i_context struct so far contains a single field for the network
filesystem to use - the cache cookie:

	struct netfs_i_context {
		...
		struct fscache_cookie	*cache;
	};

Three functions are provided to help with this:

 (1) void netfs_i_context_init(struct inode *inode,
			       const struct netfs_request_ops *ops);

     Initialise the netfs context and set the operations.

 (2) struct netfs_i_context *netfs_i_context(struct inode *inode);

     Find the netfs context from the VFS inode.

 (3) struct inode *netfs_inode(struct netfs_i_context *ctx);

     Find the VFS inode from the netfs context.

Changes
=======
ver grate-driver#3)
 - Split out the bit to move ceph cap-getting on readahead into
   ceph_init_request()[1].

ver #2)
 - Adjust documentation to match.
 - Use "#if IS_ENABLED()" in netfs_i_cookie(), not "#ifdef".
 - Move the cap check from ceph_readahead() to ceph_init_request() to be
   called from netfslib.
 - Remove ceph_readahead() and use  netfs_readahead() directly instead.

Signed-off-by: David Howells <[email protected]>
cc: [email protected]
Link: https://lore.kernel.org/r/[email protected]/ [1]
Link: https://lore.kernel.org/r/164622984545.3564931.15691742939278418580.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/164678213320.1200972.16807551936267647470.stgit@warthog.procyon.org.uk/ # v2
jonasschwoebel pushed a commit to Open-Surface-RT/grate-linux that referenced this pull request Oct 21, 2022
…k_under_node()

Patch series "drivers/base/memory: determine and store zone for single-zone memory blocks", v2.

I remember talking to Michal in the past about removing
test_pages_in_a_zone(), which we use for:
* verifying that a memory block we intend to offline is really only managed
  by a single zone. We don't support offlining of memory blocks that are
  managed by multiple zones (e.g., multiple nodes, DMA and DMA32)
* exposing that zone to user space via
  /sys/devices/system/memory/memory*/valid_zones

Now that I identified some more cases where test_pages_in_a_zone() might
go wrong, and we received an UBSAN report (see patch grate-driver#3), let's get rid of
this PFN walker.

So instead of detecting the zone at runtime with test_pages_in_a_zone() by
scanning the memmap, let's determine and remember for each memory block if
it's managed by a single zone.  The stored zone can then be used for the
above two cases, avoiding a manual lookup using test_pages_in_a_zone().

This avoids eventually stumbling over uninitialized memmaps in corner
cases, especially when ZONE_DEVICE ranges partly fall into memory block
(that are responsible for managing System RAM).

Handling memory onlining is easy, because we online to exactly one zone.
Handling boot memory is more tricky, because we want to avoid scanning all
zones of all nodes to detect possible zones that overlap with the physical
memory region of interest.  Fortunately, we already have code that
determines the applicable nodes for a memory block, to create sysfs links
-- we'll hook into that.

Patch #1 is a simple cleanup I had laying around for a longer time.
Patch #2 contains the main logic to remove test_pages_in_a_zone() and
further details.

[1] https://lkml.kernel.org/r/[email protected]
[2] https://lkml.kernel.org/r/[email protected]

This patch (of 2):

Let's adjust the stale terminology, making it match
unregister_memory_block_under_nodes() and
do_register_memory_block_under_node().  We're dealing with memory block
devices, which span 1..X memory sections.

Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: David Hildenbrand <[email protected]>
Acked-by: Oscar Salvador <[email protected]>
Cc: Greg Kroah-Hartman <[email protected]>
Cc: Michal Hocko <[email protected]>
Cc: "Rafael J. Wysocki" <[email protected]>
Cc: Rafael Parra <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants