Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.05023 #4047

Closed
wants to merge 6 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
336 changes: 336 additions & 0 deletions joss.05023/10.21105.joss.05023.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,336 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20230312T131356-1dab63e07f2a554caa452738f5df58643257a3a5</doi_batch_id>
<timestamp>20230312131356</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org/</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>03</month>
<year>2023</year>
</publication_date>
<journal_volume>
<volume>8</volume>
</journal_volume>
<issue>83</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>High-performance neural population dynamics modeling
enabled by scalable computational infrastructure</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Aashish N.</given_name>
<surname>Patel</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Andrew R.</given_name>
<surname>Sedler</surname>
<ORCID>https://orcid.org/0000-0001-9480-0698</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Jingya</given_name>
<surname>Huang</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Chethan</given_name>
<surname>Pandarinath</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Vikash</given_name>
<surname>Gilja</surname>
</person_name>
</contributors>
<publication_date>
<month>03</month>
<day>12</day>
<year>2023</year>
</publication_date>
<pages>
<first_page>5023</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05023</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.7719505</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https:/openjournals/joss-reviews/issues/5023</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05023</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05023</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05023.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="cunningham2014dimensionality">
<article_title>Dimensionality reduction for large-scale
neural recordings</article_title>
<author>Cunningham</author>
<journal_title>Nature Neuroscience</journal_title>
<issue>11</issue>
<volume>17</volume>
<doi>10.1038/nn.3776</doi>
<cYear>2014</cYear>
<unstructured_citation>Cunningham, J. P., &amp; Yu, B. M.
(2014). Dimensionality reduction for large-scale neural recordings.
Nature Neuroscience, 17(11), 1500–1509.
https://doi.org/10.1038/nn.3776</unstructured_citation>
</citation>
<citation key="keshtkaran2021large">
<article_title>A large-scale neural network training
framework for generalized estimation of single-trial population
dynamics</article_title>
<author>Keshtkaran</author>
<journal_title>Nature Methods</journal_title>
<issue>12</issue>
<volume>19</volume>
<doi>10.1038/s41592-022-01675-0</doi>
<cYear>2022</cYear>
<unstructured_citation>Keshtkaran, M. R., Sedler, A. R.,
Chowdhury, R. H., Tandon, R., Basrai, D., Nguyen, S. L., Sohn, H.,
Jazayeri, M., Miller, L. E., &amp; Pandarinath, C. (2022). A large-scale
neural network training framework for generalized estimation of
single-trial population dynamics. Nature Methods, 19(12), 1572–1577.
https://doi.org/10.1038/s41592-022-01675-0</unstructured_citation>
</citation>
<citation key="pandarinath2018inferring">
<article_title>Inferring single-trial neural population
dynamics using sequential auto-encoders</article_title>
<author>Pandarinath</author>
<journal_title>Nature Methods</journal_title>
<issue>10</issue>
<volume>15</volume>
<doi>10.1038/s41592-018-0109-9</doi>
<cYear>2018</cYear>
<unstructured_citation>Pandarinath, C., O’Shea, D. J.,
Collins, J., Jozefowicz, R., Stavisky, S. D., Kao, J. C., Trautmann, E.
M., Kaufman, M. T., Ryu, S. I., Hochberg, L. R., &amp; others. (2018).
Inferring single-trial neural population dynamics using sequential
auto-encoders. Nature Methods, 15(10), 805–815.
https://doi.org/10.1038/s41592-018-0109-9</unstructured_citation>
</citation>
<citation key="jaderberg2017population">
<article_title>Population based training of neural
networks</article_title>
<author>Jaderberg</author>
<doi>10.48550/ARXIV.2201.11941</doi>
<cYear>2017</cYear>
<unstructured_citation>Jaderberg, M., Dalibard, V.,
Osindero, S., Czarnecki, W. M., Donahue, J., Razavi, A., Vinyals, O.,
Green, T., Dunning, I., Simonyan, K., &amp; others. (2017). Population
based training of neural networks.
https://doi.org/10.48550/ARXIV.2201.11941</unstructured_citation>
</citation>
<citation key="moritz2018ray">
<article_title>Ray: A distributed framework for emerging
\{AI\} applications</article_title>
<author>Moritz</author>
<journal_title>13th USENIX symposium on operating systems
design and implementation (OSDI 18)</journal_title>
<doi>10.48550/arXiv.1712.05889</doi>
<cYear>2018</cYear>
<unstructured_citation>Moritz, P., Nishihara, R., Wang, S.,
Tumanov, A., Liaw, R., Liang, E., Elibol, M., Yang, Z., Paul, W.,
Jordan, M. I., &amp; others. (2018). Ray: A distributed framework for
emerging \{AI\} applications. 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), 561–577.
https://doi.org/10.48550/arXiv.1712.05889</unstructured_citation>
</citation>
<citation key="george2020katib">
<article_title>A scalable and cloud-native hyperparameter
tuning system</article_title>
<author>George</author>
<doi>10.48550/arXiv.2006.02085</doi>
<cYear>2020</cYear>
<unstructured_citation>George, J., Gao, C., Liu, R., Liu, H.
G., Tang, Y., Pydipaty, R., &amp; Saha, A. K. (2020). A scalable and
cloud-native hyperparameter tuning system.
https://doi.org/10.48550/arXiv.2006.02085</unstructured_citation>
</citation>
<citation key="churchland2021mc_maze">
<article_title>MC_maze: Macaque primary motor and dorsal
premotor cortex spiking activity during delayed reaching</article_title>
<author>Churchland</author>
<cYear>2021</cYear>
<unstructured_citation>Churchland, M., &amp; Kaufman, M.
(2021). MC_maze: Macaque primary motor and dorsal premotor cortex
spiking activity during delayed reaching (Version 0.220113.0400) [Data
set]. DANDI archive.
https://dandiarchive.org/dandiset/000128/0.220113.0400</unstructured_citation>
</citation>
<citation key="pei2021neural">
<article_title>Neural latents benchmark ‘21: Evaluating
latent variable models of neural population activity</article_title>
<author>Pei</author>
<journal_title>Proceedings of the neural information
processing systems track on datasets and benchmarks</journal_title>
<volume>1</volume>
<doi>10.48550/arXiv.2109.04463</doi>
<cYear>2021</cYear>
<unstructured_citation>Pei, F., Ye, J., Zoltowski, D.,
Zoltowski, D., Wu, A., Chowdhury, R., Sohn, H., ODoherty, J., Shenoy, K.
V., Kaufman, M., Churchland, M., Jazayeri, M., Miller, L., Pillow, J.,
Park, I. M., Dyer, E., &amp; Pandarinath, C. (2021). Neural latents
benchmark ‘21: Evaluating latent variable models of neural population
activity. In J. Vanschoren &amp; S. Yeung (Eds.), Proceedings of the
neural information processing systems track on datasets and benchmarks
(Vol. 1).
https://doi.org/10.48550/arXiv.2109.04463</unstructured_citation>
</citation>
<citation key="keshtkaran2019enabling">
<article_title>Enabling hyperparameter optimization in
sequential autoencoders for spiking neural data</article_title>
<author>Keshtkaran</author>
<journal_title>Advances in neural information processing
systems</journal_title>
<volume>32</volume>
<cYear>2019</cYear>
<unstructured_citation>Keshtkaran, M. R., &amp; Pandarinath,
C. (2019). Enabling hyperparameter optimization in sequential
autoencoders for spiking neural data. In H. Wallach, H. Larochelle, A.
Beygelzimer, F. dAlché-Buc, E. Fox, &amp; R. Garnett (Eds.), Advances in
neural information processing systems (Vol. 32). Curran Associates, Inc.
https://proceedings.neurips.cc/paper/2019/file/6948bd44c91acd2b54ecdd1b132f10fb-Paper.pdf</unstructured_citation>
</citation>
<citation key="willett2021high">
<article_title>High-performance brain-to-text communication
via handwriting</article_title>
<author>Willett</author>
<journal_title>Nature</journal_title>
<issue>7858</issue>
<volume>593</volume>
<doi>10.1038/s41586-021-03506-2</doi>
<cYear>2021</cYear>
<unstructured_citation>Willett, F. R., Avansino, D. T.,
Hochberg, L. R., Henderson, J. M., &amp; Shenoy, K. V. (2021).
High-performance brain-to-text communication via handwriting. Nature,
593(7858), 249–254.
https://doi.org/10.1038/s41586-021-03506-2</unstructured_citation>
</citation>
<citation key="yu2021fast">
<article_title>Fast deep neural correspondence for tracking
and identifying neurons in c. Elegans using semi-synthetic
training</article_title>
<author>Yu</author>
<journal_title>eLife</journal_title>
<volume>10</volume>
<doi>10.7554/eLife.66410</doi>
<cYear>2021</cYear>
<unstructured_citation>Yu, X., Creamer, M. S., Randi, F.,
Sharma, A. K., Linderman, S. W., &amp; Leifer, A. M. (2021). Fast deep
neural correspondence for tracking and identifying neurons in c. Elegans
using semi-synthetic training. eLife, 10, e66410.
https://doi.org/10.7554/eLife.66410</unstructured_citation>
</citation>
<citation key="vyas2020computation">
<article_title>Computation through neural population
dynamics</article_title>
<author>Vyas</author>
<journal_title>Annual Review of Neuroscience</journal_title>
<volume>43</volume>
<doi>10.1146/annurev-neuro-092619-094115</doi>
<cYear>2020</cYear>
<unstructured_citation>Vyas, S., Golub, M. D., Sussillo, D.,
&amp; Shenoy, K. V. (2020). Computation through neural population
dynamics. Annual Review of Neuroscience, 43, 249.
https://doi.org/10.1146/annurev-neuro-092619-094115</unstructured_citation>
</citation>
<citation key="golub2018learning">
<article_title>Learning by neural
reassociation</article_title>
<author>Golub</author>
<journal_title>Nature Neuroscience</journal_title>
<issue>4</issue>
<volume>21</volume>
<doi>10.1038/s41593-018-0095-3</doi>
<cYear>2018</cYear>
<unstructured_citation>Golub, M. D., Sadtler, P. T., Oby, E.
R., Quick, K. M., Ryu, S. I., Tyler-Kabara, E. C., Batista, A. P.,
Chase, S. M., &amp; Yu, B. M. (2018). Learning by neural reassociation.
Nature Neuroscience, 21(4), 607–616.
https://doi.org/10.1038/s41593-018-0095-3</unstructured_citation>
</citation>
<citation key="kubeflow">
<article_title>Kubeflow: Machine learning toolkit for
kubernetes</article_title>
<cYear>2018</cYear>
<unstructured_citation>Kubeflow: Machine learning toolkit
for kubernetes (Version
swh:1:dir:086e4c66360c96571dccaa8d12645d4316a6b991). (2018).
https:/kubeflow/kubeflow</unstructured_citation>
</citation>
<citation key="vu2018shared">
<article_title>A shared vision for machine learning in
neuroscience</article_title>
<author>Vu</author>
<journal_title>Journal of Neuroscience</journal_title>
<issue>7</issue>
<volume>38</volume>
<doi>10.1523/JNEUROSCI.0508-17.2018</doi>
<cYear>2018</cYear>
<unstructured_citation>Vu, M.-A. T., Adalı, T., Ba, D.,
Buzsáki, G., Carlson, D., Heller, K., Liston, C., Rudin, C., Sohal, V.
S., Widge, A. S., &amp; others. (2018). A shared vision for machine
learning in neuroscience. Journal of Neuroscience, 38(7), 1601–1607.
https://doi.org/10.1523/JNEUROSCI.0508-17.2018</unstructured_citation>
</citation>
<citation key="credit">
<article_title>Beyond authorship: Attribution, contribution,
collaboration, and credit</article_title>
<author>Brand</author>
<journal_title>Learned Publishing</journal_title>
<issue>2</issue>
<volume>28</volume>
<doi>10.1087/20150211</doi>
<cYear>2015</cYear>
<unstructured_citation>Brand, A., Allen, L., Altman, M.,
Hlava, M., &amp; Scott, J. (2015). Beyond authorship: Attribution,
contribution, collaboration, and credit. Learned Publishing, 28(2),
151–155. https://doi.org/10.1087/20150211</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading