Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add as_uninit-like methods to pointer types and unify documentation of as_ref methods #75392

Merged
merged 1 commit into from
Aug 18, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions library/core/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -114,6 +114,7 @@
#![feature(optin_builtin_traits)]
#![feature(or_patterns)]
#![feature(prelude_import)]
#![feature(ptr_as_uninit)]
#![feature(repr_simd, platform_intrinsics)]
#![feature(rustc_attrs)]
#![feature(simd_ffi)]
Expand Down
134 changes: 117 additions & 17 deletions library/core/src/ptr/const_ptr.rs
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ use super::*;
use crate::cmp::Ordering::{self, Equal, Greater, Less};
use crate::intrinsics;
use crate::mem;
use crate::slice::SliceIndex;
use crate::slice::{self, SliceIndex};

#[lang = "const_ptr"]
impl<T: ?Sized> *const T {
Expand Down Expand Up @@ -38,32 +38,33 @@ impl<T: ?Sized> *const T {
self as _
}

/// Returns `None` if the pointer is null, or else returns a reference to
/// the value wrapped in `Some`.
/// Returns `None` if the pointer is null, or else returns a shared reference to
/// the value wrapped in `Some`. If the value may be uninitialized, [`as_uninit_ref`]
/// must be used instead.
///
/// # Safety
/// [`as_uninit_ref`]: #method.as_uninit_ref
///
/// While this method and its mutable counterpart are useful for
/// null-safety, it is important to note that this is still an unsafe
/// operation because the returned value could be pointing to invalid
/// memory.
/// # Safety
///
/// When calling this method, you have to ensure that *either* the pointer is NULL *or*
/// all of the following is true:
/// - it is properly aligned
/// - it must point to an initialized instance of T; in particular, the pointer must be
/// "dereferenceable" in the sense defined [here].
///
/// * The pointer must be properly aligned.
///
/// * It must be "dereferencable" in the sense defined in [the module documentation].
///
/// * The pointer must point to an initialized instance of `T`.
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get mutated (except inside `UnsafeCell`).
///
/// This applies even if the result of this method is unused!
/// (The part about being initialized is not yet fully decided, but until
/// it is, the only safe approach is to ensure that they are indeed initialized.)
///
/// Additionally, the lifetime `'a` returned is arbitrarily chosen and does
/// not necessarily reflect the actual lifetime of the data. *You* must enforce
/// Rust's aliasing rules. In particular, for the duration of this lifetime,
/// the memory the pointer points to must not get mutated (except inside `UnsafeCell`).
///
/// [here]: crate::ptr#safety
/// [the module documentation]: crate::ptr#safety
///
/// # Examples
///
Expand Down Expand Up @@ -101,6 +102,56 @@ impl<T: ?Sized> *const T {
if self.is_null() { None } else { unsafe { Some(&*self) } }
}

/// Returns `None` if the pointer is null, or else returns a shared reference to
/// the value wrapped in `Some`. In contrast to [`as_ref`], this does not require
/// that the value has to be initialized.
///
/// [`as_ref`]: #method.as_ref
///
/// # Safety
///
/// When calling this method, you have to ensure that *either* the pointer is NULL *or*
/// all of the following is true:
///
/// * The pointer must be properly aligned.
///
/// * It must be "dereferencable" in the sense defined in [the module documentation].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get mutated (except inside `UnsafeCell`).
///
/// This applies even if the result of this method is unused!
///
/// [the module documentation]: crate::ptr#safety
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(ptr_as_uninit)]
///
/// let ptr: *const u8 = &10u8 as *const u8;
///
/// unsafe {
/// if let Some(val_back) = ptr.as_uninit_ref() {
/// println!("We got back the value: {}!", val_back.assume_init());
/// }
/// }
/// ```
#[inline]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub unsafe fn as_uninit_ref<'a>(self) -> Option<&'a MaybeUninit<T>>
where
T: Sized,
{
// SAFETY: the caller must guarantee that `self` meets all the
// requirements for a reference.
if self.is_null() { None } else { Some(unsafe { &*(self as *const MaybeUninit<T>) }) }
}

/// Calculates the offset from a pointer.
///
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
Expand Down Expand Up @@ -906,6 +957,55 @@ impl<T> *const [T] {
// SAFETY: the caller ensures that `self` is dereferencable and `index` in-bounds.
unsafe { index.get_unchecked(self) }
}

/// Returns `None` if the pointer is null, or else returns a shared slice to
/// the value wrapped in `Some`. In contrast to [`as_ref`], this does not require
/// that the value has to be initialized.
///
/// [`as_ref`]: #method.as_ref
///
/// # Safety
///
/// When calling this method, you have to ensure that *either* the pointer is NULL *or*
/// all of the following is true:
///
/// * The pointer must be [valid] for reads for `ptr.len() * mem::size_of::<T>()` many bytes,
/// and it must be properly aligned. This means in particular:
RalfJung marked this conversation as resolved.
Show resolved Hide resolved
///
/// * The entire memory range of this slice must be contained within a single allocated object!
/// Slices can never span across multiple allocated objects.
///
/// * The pointer must be aligned even for zero-length slices. One
/// reason for this is that enum layout optimizations may rely on references
/// (including slices of any length) being aligned and non-null to distinguish
/// them from other data. You can obtain a pointer that is usable as `data`
/// for zero-length slices using [`NonNull::dangling()`].
///
/// * The total size `ptr.len() * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, for the duration of this lifetime, the memory the pointer points to must
/// not get mutated (except inside `UnsafeCell`).
///
/// This applies even if the result of this method is unused!
///
/// See also [`slice::from_raw_parts`][].
///
/// [valid]: crate::ptr#safety
/// [`NonNull::dangling()`]: NonNull::dangling
/// [`pointer::offset`]: ../std/primitive.pointer.html#method.offset
#[inline]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub unsafe fn as_uninit_slice<'a>(self) -> Option<&'a [MaybeUninit<T>]> {
if self.is_null() {
None
} else {
// SAFETY: the caller must uphold the safety contract for `as_uninit_slice`.
Some(unsafe { slice::from_raw_parts(self as *const MaybeUninit<T>, self.len()) })
}
}
}

// Equality for pointers
Expand Down
Loading