Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added tejolote #1361

Merged
merged 1 commit into from
Oct 29, 2023
Merged

Added tejolote #1361

merged 1 commit into from
Oct 29, 2023

Conversation

nicholasdille
Copy link
Contributor

No description provided.

@github-actions
Copy link

🔍 Vulnerabilities of ghcr.io/uniget-org/tools/tejolote:0.2.1

📦 Image Reference ghcr.io/uniget-org/tools/tejolote:0.2.1
digestsha256:554f68cc1ca2796691fb01c15d9b09ec85d6c3d1148af0d1514a7222aa8b6f73
vulnerabilitiescritical: 1 high: 8 medium: 11 low: 0 unspecified: 1
platformlinux/amd64
size39 MB
packages213
critical: 1 high: 4 medium: 4 low: 0 unspecified: 1stdlib 1.20.3 (golang)

pkg:golang/[email protected]

critical : CVE--2023--24540

Affected range>=1.20.0-0
<1.20.4
Fixed version1.20.4
Description

Not all valid JavaScript whitespace characters are considered to be whitespace. Templates containing whitespace characters outside of the character set "\t\n\f\r\u0020\u2028\u2029" in JavaScript contexts that also contain actions may not be properly sanitized during execution.

high : CVE--2023--29403

Affected range>=1.20.0-0
<1.20.5
Fixed version1.20.5
Description

On Unix platforms, the Go runtime does not behave differently when a binary is run with the setuid/setgid bits. This can be dangerous in certain cases, such as when dumping memory state, or assuming the status of standard i/o file descriptors.

If a setuid/setgid binary is executed with standard I/O file descriptors closed, opening any files can result in unexpected content being read or written with elevated privileges. Similarly, if a setuid/setgid program is terminated, either via panic or signal, it may leak the contents of its registers.

high : CVE--2023--44487

Affected range<1.20.10
Fixed version1.20.10
Description

A malicious HTTP/2 client which rapidly creates requests and immediately resets them can cause excessive server resource consumption. While the total number of requests is bounded by the http2.Server.MaxConcurrentStreams setting, resetting an in-progress request allows the attacker to create a new request while the existing one is still executing.

With the fix applied, HTTP/2 servers now bound the number of simultaneously executing handler goroutines to the stream concurrency limit (MaxConcurrentStreams). New requests arriving when at the limit (which can only happen after the client has reset an existing, in-flight request) will be queued until a handler exits. If the request queue grows too large, the server will terminate the connection.

This issue is also fixed in golang.org/x/net/http2 for users manually configuring HTTP/2.

The default stream concurrency limit is 250 streams (requests) per HTTP/2 connection. This value may be adjusted using the golang.org/x/net/http2 package; see the Server.MaxConcurrentStreams setting and the ConfigureServer function.

high : CVE--2023--29400

Affected range>=1.20.0-0
<1.20.4
Fixed version1.20.4
Description

Templates containing actions in unquoted HTML attributes (e.g. "attr={{.}}") executed with empty input can result in output with unexpected results when parsed due to HTML normalization rules. This may allow injection of arbitrary attributes into tags.

high : CVE--2023--24539

Affected range>=1.20.0-0
<1.20.4
Fixed version1.20.4
Description

Angle brackets (<>) are not considered dangerous characters when inserted into CSS contexts. Templates containing multiple actions separated by a '/' character can result in unexpectedly closing the CSS context and allowing for injection of unexpected HTML, if executed with untrusted input.

medium : CVE--2023--29406

Affected range>=1.20.0-0
<1.20.6
Fixed version1.20.6
Description

The HTTP/1 client does not fully validate the contents of the Host header. A maliciously crafted Host header can inject additional headers or entire requests.

With fix, the HTTP/1 client now refuses to send requests containing an invalid Request.Host or Request.URL.Host value.

medium : CVE--2023--39319

Affected range<1.20.8
Fixed version1.20.8
Description

The html/template package does not apply the proper rules for handling occurrences of "<script", "<!--", and "</script" within JS literals in <script> contexts. This may cause the template parser to improperly consider script contexts to be terminated early, causing actions to be improperly escaped. This could be leveraged to perform an XSS attack.

medium : CVE--2023--39318

Affected range<1.20.8
Fixed version1.20.8
Description

The html/template package does not properly handle HTML-like "" comment tokens, nor hashbang "#!" comment tokens, in <script> contexts. This may cause the template parser to improperly interpret the contents of <script> contexts, causing actions to be improperly escaped. This may be leveraged to perform an XSS attack.

medium : CVE--2023--29409

Affected range>=1.20.0-0
<1.20.7
Fixed version1.20.7
Description

Extremely large RSA keys in certificate chains can cause a client/server to expend significant CPU time verifying signatures.

With fix, the size of RSA keys transmitted during handshakes is restricted to <= 8192 bits.

Based on a survey of publicly trusted RSA keys, there are currently only three certificates in circulation with keys larger than this, and all three appear to be test certificates that are not actively deployed. It is possible there are larger keys in use in private PKIs, but we target the web PKI, so causing breakage here in the interests of increasing the default safety of users of crypto/tls seems reasonable.

unspecified : CVE--2023--39325

Affected range<1.20.10
Fixed version1.20.10
Description

A malicious HTTP/2 client which rapidly creates requests and immediately resets them can cause excessive server resource consumption. While the total number of requests is bounded by the http2.Server.MaxConcurrentStreams setting, resetting an in-progress request allows the attacker to create a new request while the existing one is still executing.

With the fix applied, HTTP/2 servers now bound the number of simultaneously executing handler goroutines to the stream concurrency limit (MaxConcurrentStreams). New requests arriving when at the limit (which can only happen after the client has reset an existing, in-flight request) will be queued until a handler exits. If the request queue grows too large, the server will terminate the connection.

This issue is also fixed in golang.org/x/net/http2 for users manually configuring HTTP/2.

The default stream concurrency limit is 250 streams (requests) per HTTP/2 connection. This value may be adjusted using the golang.org/x/net/http2 package; see the Server.MaxConcurrentStreams setting and the ConfigureServer function.

critical: 0 high: 1 medium: 2 low: 0 github.com/docker/docker 23.0.1+incompatible (golang)

pkg:golang/github.com/docker/[email protected]+incompatible

high 7.5: CVE--2023--28840 Unprotected Alternate Channel

Affected range>=23.0.0
<23.0.3
Fixed version23.0.3
CVSS Score7.5
CVSS VectorCVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:N/A:L
Description

Moby is an open source container framework developed by Docker Inc. that is distributed as Docker, Mirantis Container Runtime, and various other downstream projects/products. The Moby daemon component (dockerd), which is developed as moby/moby is commonly referred to as Docker.

Swarm Mode, which is compiled in and delivered by default in dockerd and is thus present in most major Moby downstreams, is a simple, built-in container orchestrator that is implemented through a combination of SwarmKit and supporting network code.

The overlay network driver is a core feature of Swarm Mode, providing isolated virtual LANs that allow communication between containers and services across the cluster. This driver is an implementation/user of VXLAN, which encapsulates link-layer (Ethernet) frames in UDP datagrams that tag the frame with a VXLAN Network ID (VNI) that identifies the originating overlay network. In addition, the overlay network driver supports an optional, off-by-default encrypted mode, which is especially useful when VXLAN packets traverses an untrusted network between nodes.

Encrypted overlay networks function by encapsulating the VXLAN datagrams through the use of the IPsec Encapsulating Security Payload protocol in Transport mode. By deploying IPSec encapsulation, encrypted overlay networks gain the additional properties of source authentication through cryptographic proof, data integrity through check-summing, and confidentiality through encryption.

When setting an endpoint up on an encrypted overlay network, Moby installs three iptables (Linux kernel firewall) rules that enforce both incoming and outgoing IPSec. These rules rely on the u32 iptables extension provided by the xt_u32 kernel module to directly filter on a VXLAN packet's VNI field, so that IPSec guarantees can be enforced on encrypted overlay networks without interfering with other overlay networks or other users of VXLAN.

Two iptables rules serve to filter incoming VXLAN datagrams with a VNI that corresponds to an encrypted network and discards unencrypted datagrams. The rules are appended to the end of the INPUT filter chain, following any rules that have been previously set by the system administrator. Administrator-set rules take precedence over the rules Moby sets to discard unencrypted VXLAN datagrams, which can potentially admit unencrypted datagrams that should have been discarded.

On Red Hat Enterprise Linux and derivatives such as CentOS and Rocky, the xt_u32 module has been:

These rules are not created when xt_u32 is unavailable, even though the container is still attached to the network.

Impact

Encrypted overlay networks on affected configurations silently accept cleartext VXLAN datagrams that are tagged with the VNI of an encrypted overlay network. As a result, it is possible to inject arbitrary Ethernet frames into the encrypted overlay network by encapsulating them in VXLAN datagrams.

The injection of arbitrary Ethernet frames can enable a Denial of Service attack. A sophisticated attacker may be able to establish a UDP or TCP connection by way of the container’s outbound gateway that would otherwise be blocked by a stateful firewall, or carry out other escalations beyond simple injection by smuggling packets into the overlay network.

Patches

Patches are available in Moby releases 23.0.3, and 20.10.24. As Mirantis Container Runtime's 20.10 releases are numbered differently, users of that platform should update to 20.10.16.

Workarounds

  • Close the VXLAN port (by default, UDP port 4789) to incoming traffic at the Internet boundary (see GHSA-vwm3-crmr-xfxw) to prevent all VXLAN packet injection.
  • Ensure that the xt_u32 kernel module is available on all nodes of the Swarm cluster.

Background

  • #43382 partially discussed this concern, but did not consider the security implications.
  • Mirantis FIELD-5788 essentially duplicates #43382, and was created six months earlier; it similarly overlooked the security implications.
  • #45118 is the ancestor of the final patches, and was where the security implications were discovered.

Related

medium 6.8: CVE--2023--28842 Unprotected Alternate Channel

Affected range>=23.0.0
<23.0.3
Fixed version23.0.3
CVSS Score6.8
CVSS VectorCVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:N/I:H/A:N
Description

Moby is an open source container framework developed by Docker Inc. that is distributed as Docker, Mirantis Container Runtime, and various other downstream projects/products. The Moby daemon component (dockerd), which is developed as moby/moby is commonly referred to as Docker.

Swarm Mode, which is compiled in and delivered by default in dockerd and is thus present in most major Moby downstreams, is a simple, built-in container orchestrator that is implemented through a combination of SwarmKit and supporting network code.

The overlay network driver is a core feature of Swarm Mode, providing isolated virtual LANs that allow communication between containers and services across the cluster. This driver is an implementation/user of VXLAN, which encapsulates link-layer (Ethernet) frames in UDP datagrams that tag the frame with a VXLAN Network ID (VNI) that identifies the originating overlay network. In addition, the overlay network driver supports an optional, off-by-default encrypted mode, which is especially useful when VXLAN packets traverses an untrusted network between nodes.

Encrypted overlay networks function by encapsulating the VXLAN datagrams through the use of the IPsec Encapsulating Security Payload protocol in Transport mode. By deploying IPSec encapsulation, encrypted overlay networks gain the additional properties of source authentication through cryptographic proof, data integrity through check-summing, and confidentiality through encryption.

When setting an endpoint up on an encrypted overlay network, Moby installs three iptables (Linux kernel firewall) rules that enforce both incoming and outgoing IPSec. These rules rely on the u32 iptables extension provided by the xt_u32 kernel module to directly filter on a VXLAN packet's VNI field, so that IPSec guarantees can be enforced on encrypted overlay networks without interfering with other overlay networks or other users of VXLAN.

The overlay driver dynamically and lazily defines the kernel configuration for the VXLAN network on each node as containers are attached and detached. Routes and encryption parameters are only defined for destination nodes that participate in the network. The iptables rules that prevent encrypted overlay networks from accepting unencrypted packets are not created until a peer is available with which to communicate.

Impact

Encrypted overlay networks silently accept cleartext VXLAN datagrams that are tagged with the VNI of an encrypted overlay network. As a result, it is possible to inject arbitrary Ethernet frames into the encrypted overlay network by encapsulating them in VXLAN datagrams. The implications of this can be quite dire, and GHSA-vwm3-crmr-xfxw should be referenced for a deeper exploration.

Patches

Patches are available in Moby releases 23.0.3, and 20.10.24. As Mirantis Container Runtime's 20.10 releases are numbered differently, users of that platform should update to 20.10.16.

Workarounds

  • In multi-node clusters, deploy a global ‘pause’ container for each encrypted overlay network, on every node. For example, use the registry.k8s.io/pause image and a --mode global service.
  • For a single-node cluster, do not use overlay networks of any sort. Bridge networks provide the same connectivity on a single node and have no multi-node features.
    The Swarm ingress feature is implemented using an overlay network, but can be disabled by publishing ports in host mode instead of ingress mode (allowing the use of an external load balancer), and removing the ingress network.
  • If encrypted overlay networks are in exclusive use, block UDP port 4789 from traffic that has not been validated by IPSec. For example, iptables -A INPUT -m udp —-dport 4789 -m policy --dir in --pol none -j DROP.

Background

Related

medium 6.8: CVE--2023--28841 Missing Encryption of Sensitive Data

Affected range>=23.0.0
<23.0.3
Fixed version23.0.3
CVSS Score6.8
CVSS VectorCVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:N/A:N
Description

Moby is an open source container framework developed by Docker Inc. that is distributed as Docker, Mirantis Container Runtime, and various other downstream projects/products. The Moby daemon component (dockerd), which is developed as moby/moby is commonly referred to as Docker.

Swarm Mode, which is compiled in and delivered by default in dockerd and is thus present in most major Moby downstreams, is a simple, built-in container orchestrator that is implemented through a combination of SwarmKit and supporting network code.

The overlay network driver is a core feature of Swarm Mode, providing isolated virtual LANs that allow communication between containers and services across the cluster. This driver is an implementation/user of VXLAN, which encapsulates link-layer (Ethernet) frames in UDP datagrams that tag the frame with a VXLAN Network ID (VNI) that identifies the originating overlay network. In addition, the overlay network driver supports an optional, off-by-default encrypted mode, which is especially useful when VXLAN packets traverses an untrusted network between nodes.

Encrypted overlay networks function by encapsulating the VXLAN datagrams through the use of the IPsec Encapsulating Security Payload protocol in Transport mode. By deploying IPSec encapsulation, encrypted overlay networks gain the additional properties of source authentication through cryptographic proof, data integrity through check-summing, and confidentiality through encryption.

When setting an endpoint up on an encrypted overlay network, Moby installs three iptables (Linux kernel firewall) rules that enforce both incoming and outgoing IPSec. These rules rely on the u32 iptables extension provided by the xt_u32 kernel module to directly filter on a VXLAN packet's VNI field, so that IPSec guarantees can be enforced on encrypted overlay networks without interfering with other overlay networks or other users of VXLAN.

An iptables rule designates outgoing VXLAN datagrams with a VNI that corresponds to an encrypted overlay network for IPsec encapsulation.

On Red Hat Enterprise Linux and derivatives such as CentOS and Rocky, the xt_u32 module has been:

This rule is not created when xt_u32 is unavailable, even though the container is still attached to the network.

Impact

Encrypted overlay networks on affected platforms silently transmit unencrypted data. As a result, overlay networks may appear to be functional, passing traffic as expected, but without any of the expected confidentiality or data integrity guarantees.

It is possible for an attacker sitting in a trusted position on the network to read all of the application traffic that is moving across the overlay network, resulting in unexpected secrets or user data disclosure. Thus, because many database protocols, internal APIs, etc. are not protected by a second layer of encryption, a user may rely on Swarm encrypted overlay networks to provide confidentiality, which due to this vulnerability is no longer guaranteed.

Patches

Patches are available in Moby releases 23.0.3, and 20.10.24. As Mirantis Container Runtime's 20.10 releases are numbered differently, users of that platform should update to 20.10.16.

Workarounds

  • Close the VXLAN port (by default, UDP port 4789) to outgoing traffic at the Internet boundary (see GHSA-vwm3-crmr-xfxw) in order to prevent unintentionally leaking unencrypted traffic over the Internet.
  • Ensure that the xt_u32 kernel module is available on all nodes of the Swarm cluster.

Background

  • #43382 partially discussed this concern, but did not consider the security implications.
  • Mirantis FIELD-5788 essentially duplicates #43382, and was created six months earlier; it similarly overlooked the security implications.
  • #45118 is the ancestor of the final patches, and was where the security implications were discovered.

Related

critical: 0 high: 1 medium: 1 low: 0 github.com/sigstore/rekor 1.1.0 (golang)

pkg:golang/github.com/sigstore/[email protected]

high 7.5: CVE--2023--30551 Allocation of Resources Without Limits or Throttling

Affected range<1.1.1
Fixed version1.1.1
CVSS Score7.5
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
Description

Summary

Two vulnerabilities have been found in Rekor types for archive files JARs and APKs, where Rekor would crash due to out of memory conditions caused by reading archive metadata files into memory without checking their sizes first causing a Denial of Service of Rekor.

These vulnerabilities were found through fuzzing with OSS-Fuzz.

Vulnerability 1: OOM due to large files in META-INF directory of JAR files.

Summary

Verification of a JAR file submitted to Rekor can cause an out of memory crash if files within the META-INF directory of the JAR are sufficiently large.

Details

As part of verifying a JAR file, Rekor uses the relic library to check that the JAR is signed, the signature verifies, and that the hashes in the signed manifest are all valid. This library function reads files within META-INF/ into memory without checking their sizes, resulting in an OOM if the uncompressed file is sufficiently large. Rekor is also not performing any such checks prior to passing the JAR to this library function.

Patches

Users should update to the latest version of Rekor, 1.1.1.

Workaround

There are no workarounds, users should update.

Vulnerability 2: OOM due to large .SIGN and .PKGINFO files in APK files.

Summary

Parsing of an APK file submitted to Rekor can cause an out of memory crash if the .SIGN or .PKGINFO files within the APK are sufficiently large.

Details

When parsing an APK file, Rekor allocates byte slices to read both the .SIGN and .PKGINFO files into memory in order to verify the signature and hashes in the APK. These byte slices are allocated based on the size included in the tar header for each file, with no checks performed on that size. If the size in the header is sufficiently large, either because the uncompressed file is large or the size in the header has been artificially set to a large value, Rekor will crash due to an out of memory panic.

Patches

Users should update to the latest version of Rekor, 1.1.1.

Workaround

There are no workarounds, users should update.

medium 5.3: CVE--2023--33199 Reachable Assertion

Affected range<1.2.0
Fixed version1.2.0
CVSS Score5.3
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L
Description

Impact

A malformed proposed entry of the intoto/v0.0.2 type can cause a panic on a thread within the Rekor process. The thread is recovered so the client receives a 500 error message and service still continues, so the availability impact of this is minimal.

Patches

This is fixed in v1.2.0 of Rekor.

Workarounds

No

References

Discovered by OSS-Fuzz

critical: 0 high: 1 medium: 0 low: 0 github.com/docker/distribution 2.8.1+incompatible (golang)

pkg:golang/github.com/docker/[email protected]+incompatible

high 7.5: CVE--2023--2253 Undefined Behavior for Input to API

Affected range<2.8.2-beta.1
Fixed version2.8.2-beta.1
CVSS Score7.5
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
Description

Impact

Systems that run distribution built after a specific commit running on memory-restricted environments can suffer from denial of service by a crafted malicious /v2/_catalog API endpoint request.

Patches

Upgrade to at least 2.8.2-beta.1 if you are running v2.8.x release. If you use the code from the main branch, update at least to the commit after f55a6552b006a381d9167e328808565dd2bf77dc.

Workarounds

There is no way to work around this issue without patching. Restrict access to the affected API endpoint: see the recommendations section.

References

/v2/_catalog endpoint accepts a parameter to control the maximum amount of records returned (query string: n).

When not given the default n=100 is used. The server trusts that n has an acceptable value, however when using a
maliciously large value, it allocates an array/slice of n of strings before filling the slice with data.

This behaviour was introduced ~7yrs ago [1].

Recommendation

The /v2/_catalog endpoint was designed specifically to do registry syncs with search or other API systems. Such an endpoint would create a lot of load on the backend system, due to overfetch required to serve a request in certain implementations.

Because of this, we strongly recommend keeping this API endpoint behind heightened privilege and avoiding leaving it exposed to the internet.

For more information

If you have any questions or comments about this advisory:

[1] faulty commit

critical: 0 high: 1 medium: 0 low: 0 google.golang.org/grpc 1.54.0 (golang)

pkg:golang/google.golang.org/[email protected]

high 7.5: GHSA--m425--mq94--257g

Affected range<1.56.3
Fixed version1.56.3
CVSS Score7.5
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
Description

Impact

In affected releases of gRPC-Go, it is possible for an attacker to send HTTP/2 requests, cancel them, and send subsequent requests, which is valid by the HTTP/2 protocol, but would cause the gRPC-Go server to launch more concurrent method handlers than the configured maximum stream limit.

Patches

This vulnerability was addressed by #6703 and has been included in patch releases: 1.56.3, 1.57.1, 1.58.3. It is also included in the latest release, 1.59.0.

Along with applying the patch, users should also ensure they are using the grpc.MaxConcurrentStreams server option to apply a limit to the server's resources used for any single connection.

Workarounds

None.

References

#6703

critical: 0 high: 0 medium: 3 low: 0 golang.org/x/net 0.9.0 (golang)

pkg:golang/golang.org/x/[email protected]

medium 6.1: CVE--2023--3978 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

Affected range<0.13.0
Fixed version0.13.0
CVSS Score6.1
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N
Description

Text nodes not in the HTML namespace are incorrectly literally rendered, causing text which should be escaped to not be. This could lead to an XSS attack.

medium 5.3: CVE--2023--44487 Uncontrolled Resource Consumption

Affected range<0.17.0
Fixed version0.17.0
CVSS Score5.3
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L
Description

swift-nio-http2 is vulnerable to a denial-of-service vulnerability in which a malicious client can create and then reset a large number of HTTP/2 streams in a short period of time. This causes swift-nio-http2 to commit to a large amount of expensive work which it then throws away, including creating entirely new Channels to serve the traffic. This can easily overwhelm an EventLoop and prevent it from making forward progress.

swift-nio-http2 1.28 contains a remediation for this issue that applies reset counter using a sliding window. This constrains the number of stream resets that may occur in a given window of time. Clients violating this limit will have their connections torn down. This allows clients to continue to cancel streams for legitimate reasons, while constraining malicious actors.

medium : CVE--2023--39325 Uncontrolled Resource Consumption

Affected range<0.17.0
Fixed version0.17.0
Description

A malicious HTTP/2 client which rapidly creates requests and immediately resets them can cause excessive server resource consumption. While the total number of requests is bounded by the http2.Server.MaxConcurrentStreams setting, resetting an in-progress request allows the attacker to create a new request while the existing one is still executing.

With the fix applied, HTTP/2 servers now bound the number of simultaneously executing handler goroutines to the stream concurrency limit (MaxConcurrentStreams). New requests arriving when at the limit (which can only happen after the client has reset an existing, in-flight request) will be queued until a handler exits. If the request queue grows too large, the server will terminate the connection.

This issue is also fixed in golang.org/x/net/http2 for users manually configuring HTTP/2.

The default stream concurrency limit is 250 streams (requests) per HTTP/2 connection. This value may be adjusted using the golang.org/x/net/http2 package; see the Server.MaxConcurrentStreams setting and the ConfigureServer function.

critical: 0 high: 0 medium: 1 low: 0 github.com/cloudflare/circl 1.2.0 (golang)

pkg:golang/github.com/cloudflare/[email protected]

medium 5.3: CVE--2023--1732 Improper Input Validation

Affected range<1.3.3
Fixed version1.3.3
CVSS Score5.3
CVSS VectorCVSS:3.1/AV:L/AC:H/PR:N/UI:R/S:U/C:L/I:H/A:N
Description

Impact

When sampling randomness for a shared secret, the implementation of Kyber and FrodoKEM, did not check whether crypto/rand.Read() returns an error. In rare deployment cases (error thrown by the Read() function), this could lead to a predictable shared secret.

The tkn20 and blindrsa components did not check whether enough randomness was returned from the user provided randomness source. Typically the user provides crypto/rand.Reader, which in the vast majority of cases will always return the right number random bytes. In the cases where it does not, or the user provides a source that does not, the blinding for blindrsa is weak and integrity of the plaintext is not ensured in tkn20.

Patches

The fix was introduced in CIRCL v. 1.3.3

@github-actions
Copy link

Attempting automerge. See https:/uniget-org/tools/actions/runs/6684205523.

@nicholasdille nicholasdille merged commit 74cdf8a into main Oct 29, 2023
7 checks passed
@nicholasdille nicholasdille deleted the tejolote branch October 29, 2023 15:23
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant